英特尔实验室(Intel Labs)和宾夕法尼亚大学佩雷尔曼医学院(Perelman School of Medicine at the University of Pennsylvania)近日发布了一项联合研究,该研究使用联邦学习(一种分布式机器学习和人工智能方法)来帮助医疗和研究机构发现恶性脑肿瘤。
据说这项研究是有史以来规模最大的医学类联邦学习研究,所使用的全球数据集是前所未有的。该项目使用了来自六大洲71个机构的数据,能够将脑肿瘤检测提高33%。
英特尔认为,由于美国各州和国家数据隐私法律(包括Health Insurance Portability and Accountability Act,HIPAA)的规定,长期以来数据可访问性一直是医疗领域面临的一个问题。由于HIPAA法案,在不损害患者健康信息的情况下,大规模的医学研究和数据共享几乎是不可能的。英特尔的联邦学习硬件和软件符合数据隐私问题,并通过机密计算保护数据完整性、隐私和安全性。
这次英特尔实验室和宾大医学院的研究涉及在分散式系统中处理大量数据,使用英特联邦学习技术与Intel Software Guard Extensions相结合,消除阻碍癌症和疾病研究等方面合作过程中存在的数据共享障碍。该系统通过将原始数据保存在数据持有者的计算基础设施中来解决数据隐私问题,并且只允许通过发送到中央服务器或聚合器的数据(而不是数据本身)进行模型更新计算。
该研究报告高级作者、宾大医学院病理学与检验医学和放射学助理教授Spyridon Bakas解释说:“在这项研究中,联邦学习显示了它作为范式转变的潜力,通过允许访问文献中考虑过的最大规模和最多样化的胶质母细胞瘤患者数据集,来实现多机构之间的合作,同时所有数据始终保留在每个机构内。我们输入机器学习模型的数据越多,模型就会变得越准确,这反过来可以提高我们理解和治疗罕见疾病例如胶质母细胞瘤的能力。”
访问大量医疗数据(包括那些超过了数据生成阈值的数据集)是该技术的关键。这项研究证明了大规模联邦学习的有效性,以及释放多站点数据孤岛之后医疗行业可以实现的潜在好处。
英特尔的技术优势则体现在帮助及早发现疾病,改善生活质量或者延长患者的寿命。
英特尔实验室首席工程师Jason Martin说:“正如我们与宾大医学院的研究表明,联邦学习在众多领域具有巨大潜力,尤其是在医疗领域。联邦学习能够帮助敏感信息和数据,这为未来的研究和合作打开了一扇大门,尤其是在无法访问数据集的情况下。”
在完成这项研究之后,英特尔实验室和宾大医学院创造了一个概念证明,使用联合学习从数据中获取知识。该解决方案可以显着影响医疗和其他研究领域,特别是在不同类型的癌症研究方面。
好文章,需要你的鼓励
当前AI技术正引发一场"认知迁移",重新定义专业价值和工作方式。不同于以往技术革命,AI不仅自动化任务,更开始承担判断、语言和创意表达,模糊了人机界限。面对这一转变,专业人士呈现五种态度:积极拥抱者、被动适应者、主动抵制者、未受影响者和边缘化群体。AI采用速度超越理解速度,重塑认知领域的同时也带来身份认同危机。这场迁移将重新定义角色、价值观和整个职业阶层,需要制度层面的具体应对措施。
上海交通大学研究团队发布了突破性的科学推理数据集MegaScience,包含125万高质量实例,首次从12000本大学教科书中大规模提取科学推理训练数据。该数据集显著提升了AI模型在物理、化学、生物等七个学科的推理能力,训练的模型在多项基准测试中超越官方版本,且具有更高的训练效率。研究团队完全开源了数据集、处理流程和评估系统。
企业持续投资云优先战略,但大型数据库云迁移面临复杂挑战。通过"规划-构建-运行"结构化方法,IT领导者可成功完成本地系统云迁移。关键包括:制定迁移策略、评估环境复杂性、选择数据传输和同步工具、创建测试计划、执行迁移并保持同步,最后优化云运营、确保安全合规。云迁移不仅是数据搬迁,更是创新增长平台的构建过程。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。