AES-100边缘智能服务器,颠覆传统服务器,架构让人工智能边缘部署更轻松
中国上海 – 2022年6月16日
全球领先的边缘计算解决方案提供商—凌华科技推出基于华为Ascend Atlas200的全新边缘智能服务器AES-100,突破固有服务器的设计理念,采用分布式AI节点加弹性灵活的处理器设计方案,可在紧凑的1U空间内布置多路边缘处理单元,也可以根据场景和需求不同搭配不同的CPU模块,适用于广泛的AI边缘应用。

AES-100视频分析服务器架构图

产品亮点
与传统的集中式算力架构相比,AES-100采用的分布式多路AI节点能够有效地降低硬件成本。
|
算力架构 |
传统集中式算力架构 |
分布式算力架构 |
|
产品特点 |
CPU+GPU的异构计算,多个GPU通过PCIE链接到两颗处理器,如:双路4PU服务器、双路8GPU服务器; |
每颗AI SOC芯片是一个完整的小算力节点,配置独立的CPU、AI核心、编解码核心、显存、存储和操作系统; |
|
CPU主要职责 |
负责数据预处理,如视频软解码,CPU性能要求较高,根据GPU数量增加,CPU的性能也要增加; |
系统CPU:负责任务调度,对CPU性能要求不高; SOC CPU:负责数据预处理; 编解码核心:负责视频编解码; |
|
内存主要职责 |
与GPU显存之间数据交换,一般配置的内存容量要大于GPU的显存总容量,GPU数量越多,需要配置的内存容量也越大; |
系统内存:负责任务调度,对内存容量要求不高; SOC 内存:相当于显存,用于数据交换; |
|
成本对比 |
CPU和内存的性能要求高,成本占比高 |
CPU和内存的性能要求低,成本占比低 |
在高算力的场景下,采用分布式算力架构的硬件成本可大幅度下降。AES-100可以广泛应用在城市道路对行人、机动车以及非机动车的特征结构化数据分析,可极大提高在海量视频中对目标的查找速度;监所等特殊场合发生的一场行为进行检测,并及时发出报警,有效提升视频监控的价值,保障工作人员及在押人员的安全。
好文章,需要你的鼓励
Lumen Technologies对美国网络的数据中心和云连接进行重大升级,在16个高连接城市的70多个第三方数据中心提供高达400Gbps以太网和IP服务。该光纤网络支持客户按需开通服务,几分钟内完成带宽配置,最高可扩展至400Gbps且按使用量付费。升级后的网络能够轻松连接数据中心和云接入点,扩展企业应用,并应对AI和数据密集型需求波动。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
RtBrick研究警告,运营商面临AI和流媒体服务带宽需求"压倒性"风险。调查显示87%运营商预期客户将要求更高宽带速度,但81%承认现有架构无法应对下一波AI和流媒体流量。84%反映客户期望已超越网络能力。尽管91%愿意投资分解式网络,95%计划五年内部署,但仅2%正在实施。主要障碍包括领导层缺乏决策支持、运营转型复杂性和专业技能短缺。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。