AES-100边缘智能服务器,颠覆传统服务器,架构让人工智能边缘部署更轻松
中国上海 – 2022年6月16日
全球领先的边缘计算解决方案提供商—凌华科技推出基于华为Ascend Atlas200的全新边缘智能服务器AES-100,突破固有服务器的设计理念,采用分布式AI节点加弹性灵活的处理器设计方案,可在紧凑的1U空间内布置多路边缘处理单元,也可以根据场景和需求不同搭配不同的CPU模块,适用于广泛的AI边缘应用。
AES-100视频分析服务器架构图
产品亮点
与传统的集中式算力架构相比,AES-100采用的分布式多路AI节点能够有效地降低硬件成本。
算力架构 |
传统集中式算力架构 |
分布式算力架构 |
产品特点 |
CPU+GPU的异构计算,多个GPU通过PCIE链接到两颗处理器,如:双路4PU服务器、双路8GPU服务器; |
每颗AI SOC芯片是一个完整的小算力节点,配置独立的CPU、AI核心、编解码核心、显存、存储和操作系统; |
CPU主要职责 |
负责数据预处理,如视频软解码,CPU性能要求较高,根据GPU数量增加,CPU的性能也要增加; |
系统CPU:负责任务调度,对CPU性能要求不高; SOC CPU:负责数据预处理; 编解码核心:负责视频编解码; |
内存主要职责 |
与GPU显存之间数据交换,一般配置的内存容量要大于GPU的显存总容量,GPU数量越多,需要配置的内存容量也越大; |
系统内存:负责任务调度,对内存容量要求不高; SOC 内存:相当于显存,用于数据交换; |
成本对比 |
CPU和内存的性能要求高,成本占比高 |
CPU和内存的性能要求低,成本占比低 |
在高算力的场景下,采用分布式算力架构的硬件成本可大幅度下降。AES-100可以广泛应用在城市道路对行人、机动车以及非机动车的特征结构化数据分析,可极大提高在海量视频中对目标的查找速度;监所等特殊场合发生的一场行为进行检测,并及时发出报警,有效提升视频监控的价值,保障工作人员及在押人员的安全。
好文章,需要你的鼓励
上海交通大学研究团队开发出革命性AI癌症诊断系统,通过深度学习技术分析50万张细胞图像,实现94.2%的诊断准确率,诊断时间从30分钟缩短至2分钟。该系统不仅能识别多种癌症类型,还具备解释性功能,已在多家医院试点应用。研究成果发表于《Nature Communications》,展示了AI在精准医疗领域的巨大潜力。
南华理工大学等机构提出3DFlowAction方法,让机器人通过预测物体3D运动轨迹来学习操作技能。该研究创建了包含11万个实例的ManiFlow-110k数据集,构建了能预测三维光流的世界模型,实现了跨机器人平台的技能迁移。在四个复杂操作任务上成功率达70%,无需特定硬件训练即可在不同机器人上部署,为通用机器人操作技术发展开辟新路径。
这是首个系统性探索跨视角协作智能的综合性研究,由南京大学、东京大学等顶尖机构联合完成。研究团队首次将"第一人称视角"与"第三人称视角"的协作应用进行了全面梳理,提出了三大技术方向和十三个关键任务,涵盖从智能厨房到手术机器人的八大应用场景。这项突破性工作为人工智能向人类认知迈进提供了重要的技术路径和理论基础。
这项由台湾大学与微软研究团队合作的研究探索了使用音频感知大语言模型(ALLMs)作为自动评判员来评估语音生成模型的说话风格。研究设计了"语音风格指令跟随"和"角色扮演"两个任务,测试了四种语音模型的表现,并比较了人类与AI评判的一致性。结果表明,特别是Gemini-2.5-pro模型,其评判结果与人类评判的一致性甚至超过了人类评判者之间的一致性,证明ALLMs可以作为可靠的自动评估工具。同时研究也发现,即使是最先进的语音模型在说话风格控制方面仍有显著改进空间。