“人工智能带来指数级增长的算力需求,一方面多样化的智能场景需要多元化的算力,巨量化的模型、数据和应用规模需要巨量的算力,算力已经成为人工智能继续发展的重中之重;另一方面从芯片到算力的转化依然存在巨大鸿沟,多元算力价值并未得到充分释放。如何快速完成多元芯片到计算系统的创新,已经成为推动人工智能产业发展的关键环节。”在10月26日举行的2021人工智能计算大会(AICC2021)上,中国工程院院士、浪潮首席科学家王恩东阐释了计算系统创新在计算到智算转变的产业新格局下的重大意义。
随着人工智能在算法领域的不断突破,不同数值精度带来了跨度更大的计算类型,对计算芯片指令集、架构的要求更加细分。图灵奖获得者 John Hennessy和 David Patterson共同发表的《计算机架构的新黄金时代》中提出:当摩尔定律不再适用,一种更以硬件为中心的针对特定问题领域定制设计计算机体系架构的方法DSAs(Domain-Specific Architectures)会成为主导,这种设计的核心在于针对特定问题或特定领域来定义计算架构。基于DSAs思想设计的AI芯片,在特定AI工作负载上表现出远超通用芯片的处理能力,大大推动了AI芯片的多元化发展。
王恩东认为,芯片多元化为产业AI化的加速提供了重要的产业基础和更加丰富的选择。但是,芯片从造出来到大规模用起来,还存在巨大的产业鸿沟,“因此,如何将百花齐放的AI芯片转变成一个通用性强、绿色高效、安全可靠的计算系统,变得至关重要。”
然而,由于AI芯片在单一计算系统中往往高密度集成,带来系统功耗、总线速率、电流密度的不断提升,AI计算系统的设计面临巨大挑战。例如一台浪潮AI服务器,需要整合超过10000个零部件,包含50多类专用芯片、30多个技术方向以及100多种传输协议,涉及到材料、热力学、电池技术、流体力学、化学等一系列学科;需要经历30多个流程、150多种加工和制造的工艺、280多个关键过程的控制点,如何确保整个系统的可靠性是一个非常精细且复杂的工程。
“从火箭发动机到运载火箭,要在循环、控制、结构等很多领域做大量的工作。芯片到计算系统同样如此,需要完成体系结构、信号完整性、散热、可靠性等大量系统性设计工作。”王恩东院士用一个生动形象的比喻,描述了计算系统创新的难度。
值得关注的是,计算系统创新的根本目的,就是要让算力、算法和数据去服务数字经济,去支撑科研创新,去推动智慧转型,这就需要加大以智算中心为代表的新型人工智能基础设施建设,以此推动AI产业化、产业AI化和政府治理的智能化。
对此,王恩东院士强调说:“我们一方面要重视智算系统的创新,加大人工智能新型基础设施建设,把从技术到应用的链条设计好,从体系结构、芯片设计、系统设计、系统软件、开发环境等各个领域形成既分工明确又协同创新的局面。同时,也要加快推动开放标准建设,通过统一的、规范的标准,将多元化算力转变为可调度的资源,让算力好用、易用。”
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。