今天IBM在Hot Chips大会上展示了一款新的芯片,该芯片可以实时对企业工作负载执行深度学习预测以解决欺诈问题。

这个名为“Telum”的芯片,是IBM首款采用针对AI推理的片上加速(或者是在交易处理过程中利用数据进行预测的过程)功能的处理器。IBM表示,该处理器可以为运行银行、金融、交易和保险工作负载以及客户交互的新一代大型机提供动力。
IBM称,Telum开发工作已经持续了三年时间,首款Telum的系统将于2022年推出。
Telum将让应用能够在靠近所使用数据的位置高效运行于云端,这就避免了需要大量资源用于内存和数据迁移以实时处理推理负载。
IBM表示,让AI加速更靠近数据,这个特性让企业能够对敏感交易进行实时的、大容量的推理,而无需求助于那些可能会影响性能的平台外AI工具。客户仍然可以在平台外构建和训练AI模型,然后在IBM Telum系统上部署剩下的部分用于实时工作负载分析。
IBM表示,Telum的关键优势在于,客户可以在不影响SLA的情况下,把关注点从检测欺诈转向预防欺诈。
Moor Insights & Strategy分析师Patrick Moorhead表示,有两种场景是把推理直接内嵌到工作负载中,会产生变革性的影响。
“首先是利用AI对业务数据进行分析以获得洞察力,例如信用卡交易欺诈检测、客户行为预测或者是供应链优化,”Moorhead解释说。
他表示,这样就可以在交易完成之前检测到欺诈交易行为,而平台外AI系统是不可能做到这一点的,因为将数据转移到系统外不可避免地会遇到网络延迟问题,从而导致交易速度慢得令人无法接受。
他说:“在平台之外你需要将数据从Z迁移到另一个平台上,而且需要延迟很低才能够持续地处理每笔交易。随着延迟的激增,有些交易就无法得到检查处理,有些客户的交易处理完成率只有70%,剩下30%的交易都没有得到保护。”
IBM表示,目前IBM正在与一家未透露名称的国际银行展开合作,使其能够检测出信用卡交易授权处理过程中可能存在的欺诈行为,该客户的目标是在保持每秒处理多达100,000次交易,同时还能够实现亚毫秒级响应时间,而这是利用现有交易处理基础设施所能实现的近10倍之多。
IBM工程师Christian Jacobi和Elpida Tzortzatos在一篇博文中解释说:“客户想要一致且可靠的推理响应时间,以毫秒级低延迟来检查每笔交易是否存在欺诈行为。Telum旨在帮助满足此类具有挑战性的要求,特别是在大规模运行组合交易和AI工作负载方面。”
而另一个片上推理可能带来的好处是使用AI让基础设施变得更加智能,例如,工作负载放置、安全异常检测、或者基于AI模型的数据库查询计划等等。
IBM表示,Telum芯片采用了三星的7纳米制程工艺,其中包含了8个处理器内核,具有深度的超标量乱序指令流水线,5 GHz的云频率,并针对异构企业级工作负载需求进行了优化。
IBM表示,Telum采用了一个全新设计的缓存和芯片互连基础设施,每个核心配置了32MB缓存,能够纵向扩展到32个Telum芯片。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。