IBM的研究人员表示,一个重要的原因是数据中心内部仍然主要依靠铜线而不是高速的光纤。
IBM杰出工程师John Knickerbocker表示:“我们估计GPU有一半的时间是在空转。”“这白白耗费了大量的能量。”
现在,IBM表示已经在解决这一问题上取得了重大进展。该公司今天发布了一种新的协同封装光学工艺,将光学元件与电子芯片直接集成在一个封装内,从而实现了数据中心设备之间的光速连接。
该公司表示,它已建立并成功测试了基于聚合物光波导的互连器件,这种由聚合物材料制成的结构灵活轻便,可引导光线沿着一条路径前进,并限制光信号,从而在保持信号完整性的同时最大限度地减少损耗。
与电气互连相比,该模块可以减少80%以上的能源需求,同时将数据中心内可连接组件的电缆从目前的一米延长至数百米。
IBM表示,这样做的结果是,人工智能大型语言模型的训练速度可提高五倍,同时,据其估计,每训练一个模型可节省相当于5000个美国家庭一年的耗电量。
电力需求激增
IBM半导体部门总经理兼IBM研究院混合云研究副总裁Mukesh Khare表示:“在生成式人工智能和LLM出现之前,计算需求每20个月翻一番。”“自从LLM出现后,每6个月就会翻一番。”
电力消耗及其相应的碳足迹是人工智能经常被忽略的一个后果。国际能源机构今年早些时候估计,到2026年,处理人工智能和加密货币工作负载的数据中心的用电量可能会翻一番。届时,这个数字将相当于日本的总耗电量。
聚合物光波导技术被广泛应用于电信、数据通信和传感领域,但在数据中心内却从来不够经济实用。原因包括初始成本高、介质易碎、传统系统中铜线占主导地位以及光纤的尺寸。
它们的直径约为250微米,是人类头发宽度的三倍,宽约四分之一毫米。这大大超过了电子电路所需的相应空间。
Khare表示:“虽然业界在制造越来越快的芯片方面取得了重大进展,但这些芯片相互通信的速度却没有跟上。”“这中间存在着几个数量级的差距。”
IBM的研究人员利用PWG技术在芯片边缘排列高密度的光纤束,使芯片能够直接通过聚合物光纤进行通信。这种方法让光纤与连接器之间的公差缩小到半微米或者更小,这被认为是成功的基准。
该公司表示,其新型光学结构使芯片制造商能够在硅光子芯片边缘封装六倍于现在数量的光纤。每根光纤的跨度只有几厘米,每秒可传输太比特级的数据。当为每个光通道传输配置多个波长时,CPO技术可将芯片间的带宽提高80倍之多。
IBM表示,其工艺已将传统光通道的尺寸缩小了80%,测试表明还可能进一步缩小,从而将带宽提高1200%。
共同封装的光学模块已可投入商业使用,并将在IBM位于魁北克布罗蒙的工厂生产。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。