
2021 年 8 月 23 日 — 在一年一度的 Hot Chips 大会上,IBM(纽交所证券代码:IBM)今日公布了即将推出的全新 IBM Telum 处理器的细节,该处理器旨在将深度学习推理能力引入企业工作负载,帮助实时解决欺诈问题。Telum 是 IBM 首款具有芯片上加速功能的处理器,能够在交易时进行 AI 推理。经过三年的研发,这款新型芯片上硬件加速技术实现了突破,旨在帮助客户从银行、金融、贸易和保险应用以及客户互动中大规模获得业务洞察。基于 Telum 的系统计划于 2022 年上半年推出。
根据 IBM 委托 Morning Consult 开展的最近研究,90% 的受访者表示,必须做到无论数据位于何处,都能够构建和运行 AI 项目,这一点非常重要。[1].IBM Telum 旨在让应用能够在数据所在之处高效运行,帮助克服传统企业 AI 方法的限制 — 需要大量的内存和数据移动能力才能处理推理。借助 Telum,加速器在非常靠近任务关键型数据和应用的地方运行,这意味着企业可以对实时敏感交易进行海量推理,而无需在平台外调用 AI 解决方案,从而避免对性能产生影响。客户还可以在平台外构建和训练 AI 模型,在支持 Telum 的 IBM 系统上部署模型并执行推理,以供分析之用。
银行、金融、贸易、保险等领域的创新
如今,企业使用的检测方法通常只能发现已经发生的欺诈活动。由于目前技术的局限性,这一过程还可能非常耗时,并且需要大量计算,尤其是当欺诈分析和检测在远离任务关键型交易和数据的地方执行的情况下。由于延迟,复杂的欺诈检测往往无法实时完成 — 这意味着,在零售商意识到发生欺诈之前,恶意行为实施者可能已经用偷来的信用卡成功购买了商品。
根据 2020 年的《消费者“前哨”网络数据手册》,2020 年消费者报告的欺诈损失超过 33 亿美元,高于 2019 年的 18 亿美元[2]。Telum 可帮助客户从欺诈检测态势转变为欺诈预防,从目前的捕获多个欺诈案例,转变为在交易完成前大规模预防欺诈的新时代,而且不会影响服务级别协议 (SLA)。
这款新型芯片采用了创新的集中式设计,支持客户充分利用 AI 处理器的全部能力,轻松处理特定于 AI 的工作负载;因此,它成为欺诈检测、贷款处理、贸易清算和结算、反洗钱以及风险分析等金融服务工作负载的理想之选。通过这些新型创新,客户能够增强基于规则的现有欺诈检测能力,或者使用机器学习,加快信贷审批流程,改善客户服务和盈利能力,发现可能失败的贸易或交易,并提出解决方案,以创建更高效的结算流程。


Telum 和 IBM 采用全栈方法进行芯片设计
Telum 遵循 IBM 在创新设计和工程方面的悠久传统,包括硬件和软件的共同创新,以及覆盖对半导体、系统、固件、操作系统和主要软件框架的有效整合。
该芯片包含 8 个处理器核心,具有深度超标量乱序指令管道(A deep super-scalar out-of-order instruction pipeline),时钟频率超过 5GHz,并针对异构企业级工作负载的需求进行了优化。彻底重新设计的高速缓存和芯片互连基础架构为每个计算核心提供 32MB 缓存,可以扩展到 32 个 Telum 芯片。双芯片模块设计包含 220 亿个晶体管,17 层金属层上的线路总长度达到 19 英里。

半导体领先地位
Telum 是使用 IBM 研究院 AI 硬件中心的技术研发的首款 IBM 芯片。此外,三星是 IBM 在 7 纳米 EUV 技术节点上研发的 Telum 处理器的技术研发合作伙伴。
Telum 是 IBM 在硬件技术领域保持领先地位的又一例证。作为世界上最大的工业研究机构之一,IBM 研究院最近宣布进军 2 纳米节点,这是 IBM 芯片和半导体创新传统的最新标杆。在纽约州奥尔巴尼市 — IBM AI 硬件中心和奥尔巴尼纳米科技中心的所在地,IBM 研究院与公共/私营领域的行业参与者共同建立了领先的协作式生态系统,旨在推动半导体研究的进展,帮助解决全球制造需求,加速芯片行业的发展。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。