北京,2021年5月11日——IBM Z在市场上高歌猛进。过去一年,在IBM保密计算能力、数字资产托管等新工作负载的推动下,IBM Z平台的销售势如破竹,令人兴奋;有85家客户积极规划或者正在IBM Z和LinuxONE上进行RedHat OpenShift的方案验证。事实上,根据最近由Deloitte赞助的一项Forrester调研,74%的受访者认为IBM Z作为组织的战略平台,仍具有长久的生命力。
对于许多客户而言,新冠病毒疫情也是使得他们加速向IBM Z平台迁移工作负载的一个推动因素。客户面临着与消费者行为不断变化相关的新型业务挑战,比如金融交易剧烈波动,以及在线零售交易持续增加等;因此,他们寻求IBM Z的帮助,希望以可预测、弹性而安全的方式管理激增的峰值业务量。事实上,与2019年第二季度相比,IBM Z客户在2020年第二季度通过按需开/关容量(On/OffCapacityonDemand)功能,临时激活的通用容量增加了近4倍。
但这并不意味着IBM Z家族系列只适用于当今最大型的企业。我之前多次提到,也花了很多时间介绍Kody Pay和Ilara Health这样的初创企业以及包括Cognition Foundry在内的业务合作伙伴,他们因为卓越的安全能力而选择LinuxONE,将其作为自己在混合云市场上的差异化竞争优势。
在宣布将IBM DS8910F Storage部署到IBM Z15 Model T02机架中不到一周时间,IBM今天就发布新的入门级LinuxONE硬件IBM LinuxONE III Express,以及针对IBM Z硬件的灵活的新定价模式——随需使用计费模式。
发布IBM LinuxONE III Express
IBM LinuxONE III Express是面向初创企业、业务合作伙伴以及ISV的现成可用的平台,它在设计时就考虑了速度的提升,以便帮助客户快速启动并运行。
根据IDC2020年第4季度的跟踪/预测报告,2021年中端企业服务器的平均价格为154200美元。其中单一既定配置LinuxONE III Express是为最热门的工作负载(包括数据服务和RedHat OpenShift)设计的一种经济实惠的新产品。IBM内部测试表明,运行同样WebSphere和Db2工作负载的12核IBM LinuxONE III LT2 Express服务器需要的内核比同级别的x86服务器要少18.7倍,三年的总体拥有成本(TCO)要低57%。
LinuxONE III Express将在5月25日正式推出,具有以下特性:
本次发布使IBM有机会将LinuxONE客户的范围扩大到更多的初创企业和ISV,同时IBM还发布了一个新的定价模式,以帮助IBM Z客户最大程度降低平台成本和提高生产效率。
提高硬件定价的灵活性
今天,IBM推出了一种新的类似云的硬件定价模式作为补充,即随需使用计费模式,使客户能够迅速响应动态工作负载和业务需求的变化。
根据最近的一项ParkMyCloud调研,到2021年,在云上浪费的支出预计将达到210亿美元,这通常是由越来越常见的“高峰”工作负载和容量需求的意外增加造成的。
IBM发布的是针对硬件的基于使用量的消费模式,有助于遏制云上支出的浪费,控制不可预测性,为客户提高硬件定价可预见性,提供随时可用的备用容量“通道”,这种“通道”采用基于使用量的收费模式,以满足临时的业务高峰需求。借助随需使用计费模式,客户现在可轻松扩展容量以满足业务需求,同时还能解决云成本失控问题。
“为了应对客户需求、市场变化及新的法规,我们的业务需求不断变化。IBM Z在我们的运营中发挥着关键的作用,在网上银行和即时支付工作负载激增的情况下,它使我们能够快速扩展,提供高质量的客户服务。随需使用计费模式提供灵活透明的定价解决方案,以类似云的方式实现最理想的业务绩效,我们只需为使用的容量付费。”一家大型欧洲银行的高管这样表示。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。