零售商利润面临重重压力的侵蚀——零售市场面临着增长缓慢和客户需求不断增加的挑战。

零售商本质上是生产者和终端消费者之间的纽带,他们的利润空间非常狭窄,这就要求他们密切关注成本和运营效率。丹麦杂货市场正面临发展缓慢、消费者的购买习惯越来越复杂、零售市场正不断分为多个极小的细分市场的艰难局面。面对这种现状,IT 系统必须能够收集更多的零售点数据、应用预测分析并及时生成报告,从而帮助零售商快速对客户的需求做出响应。
Salling Group 是丹麦的一家大型零售商,在欧洲四个国家共拥有 1,467 家零售店,51,000 名员工,每天为 140 万名到店客户提供服务。他们必须保证备有新鲜的现货能够创造销售收入,并且还不能因库存积压而造成浪费。
IT 挑战
利用大数据——即用即付的 SAP HANA 突破了传统平台的局限性。
随着 Salling Group 在国际市场上的扩张,以及交付渠道的多样化和运营时间的增加,店面级别的日常库存管理决策越来越依赖于预测性的大数据分析。Salling Group 有 50TB 的数据库,而且还在以每月 2TB 的速度增长,公司急需进行IT改造升级。
Salling Group 决定迁移至内存计算平台 SAP HANA,并且需要 SAP 合作伙伴提供一款集成了硬件、软件和 IT 管理服务的端到端解决方案。另外,Salling Group 还希望该解决方案采用即用即付的交付模式,在保持较低成本的同时还要具备足够的 IT 灵活性,以便公司能够与季节性且多变的市场动态保持同步。
解决方案
将数据转化为见解——Salling Group 与 HPE Pointnext 合作,共同开发端到端的变革性解决方案。
为了保持精益和敏捷性,同时确保满足未来的可持续增长要求,Salling Group 引入了 HPE Pointnext 来帮助自己设计、构建和部署端到端解决方案。
Salling Group 在欧洲所有店面的销售点系统每时每刻都会产生大量交易数据,公司现在需要收集这些海量数据并快速进行分析,然后及时将信息丰富的报告提供给决策者。这种从数据中获得实时见解的能力给 Salling Group 带来了极大助力。
此外,以灵活服务的形式购买基础设施让 Salling Group 节省了更多资金,进而提高了公司寻求国际化发展和市场机遇的能力。使用 HPE GreenLake 弹性容量服务,Salling Group 仅需支付自身所使用的容量费用,而不必承担账面资本支出。当业务需求发生变化时,Salling Group 可以根据自身需求安全地增加或减少容量,从而优化了现金流并提升了 IT 敏捷性。
日常运营支持也由 HPE Pointnext 提供。
成果
充分利用竞争敏捷性和客户见解,实现迅速发展——基于准确、及时的客户信息做出库存决策,帮助增加收入的同时减少浪费。
每天早晨开门营业之前,Salling Group 的店面经理都可以详细而准确地了解前一天的客户采购情况。他们不需要根据数据分析结果去猜测,就可以查看全面的个性化报告,并据此制定合适的库存储备决策,从而提高客户满意度、增加收入,减少食物腐败与浪费。这一优势使得 Salling Group 能够保持快速发展,并减轻了利润空间狭窄所带来的压力。
从个别商店该备存多少升牛奶这种微小的细节,到国际扩张方面的战略性难题,Salling Group 借助 HPE 解决方案进行了 IT 变革,将之前已成为业务瓶颈的 IT 转化成了一股具有极高敏捷性的强大推动力。
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。