Arm宣布推出Cortex-R82,该芯片旨在支持可以同时保存数据和处理数据的新一代存储设备。
这种新型硬件称为计算存储,有助于为延迟敏感型工作负载(例如机器学习和实时分析应用)提升速度。
通常来说,存储数据和处理数据的任务被分配给系统内部的单独组件去完成,磁盘或闪存驱动器用于保留信息,单独的处理器用于处理信息,每次执行操作的时候,数据都必须从存储驱动器传输到处理器,然后再返回,这个过程会导致一定的延迟,从而降低性能。
这种新型计算存储设备的目标是消除这个过程中的延迟,以加快应用的速度。存储驱动器使用内置控制器在本地处理器信息,而不是将信息发送到单独的芯片进行处理。控制器是闪存和磁盘驱动器中的一个微型计算模块,通常只用于执行低级别任务,例如写入数据和读取数据。
Arm此次新推出的Cortex-R82将被用作计算存储设备的控制器,即可以作为芯片设计提供,硬件制造商也可以根据需要进行许可和定制。
Arm称,Cortex-R82最多可以配置8个处理核心,其性能是上一代R8产品的2倍,计算能力的提升让Cortex-R82可以直接在存储驱动器内部运行完整的Linux发行版和应用。
那些计划在存储驱动器上运行机器学习模型的企业,可以通过为Cortex-R82配备Arm Neon机器学习技术来获得更高的性能。Arm表示,与上一代R8相比,Neon将神经网络的性能提高了14倍。
计算存储硬件有许多潜在的应用场景。例如,一家建筑企业可以在建筑工地部署安全摄像头,使用运行在内部闪存驱动器上的AI模型,发现潜在的危险。Arm也列出了一些更为传统的数据中心使用场景,例如数据库加速、视频转码和实时分析。
好文章,需要你的鼓励
北京大学团队开发的DragMesh系统通过简单拖拽操作实现3D物体的物理真实交互。该系统采用分工合作架构,结合语义理解、几何预测和动画生成三个模块,在保证运动精度的同时将计算开销降至现有方法的五分之一。系统支持实时交互,无需重新训练即可处理新物体,为虚拟现实和游戏开发提供了高效解决方案。
AI硬件的竞争才刚刚开始,华硕Ascent GX10这样将专业级算力带入桌面级设备的尝试,或许正在改写个人AI开发的游戏规则。
达尔豪斯大学研究团队系统性批判了当前AI多智能体模拟的静态框架局限,提出以"动态场景演化、智能体-环境共同演化、生成式智能体架构"为核心的开放式模拟范式。该研究突破传统任务导向模式,强调AI智能体应具备自主探索、社会学习和环境重塑能力,为政策制定、教育创新和社会治理提供前所未有的模拟工具。