英特尔注意了:企业计算的未来已经初具雏形,其核心不一定是x86处理器。
这是市场研究公司Wikibon首席技术官David Floyer通过一系列分析中得出的结论。Floyer表示,基于精简指令集的Arm处理器,在手机和平板电脑中已经无处不在,到本世纪20年代末,Arm处理器将承载越来越多的企业工作负载,为72%的新型企业服务器提供动力。
x86芯片几乎完全是由英特尔和AMD这两家厂商设计和制造的,而与x86芯片不同的是,Arm处理器则是由十几家半导体厂商基于Arm授权的设计制造生产的。AWS和Google以及苹果等手机制造商、特斯拉等汽车制造商都采用了Arm的芯片设计。
Floyer写道:“与x86相比,Arm处理器的数量是全球晶圆数量的10倍。”这不仅降低了Arm处理器的成本,而且也让新的设计能够得到蓬勃发展。
“基于Arm处理器的系统的性能水平已经相当于或者超过了传统的x86系统。”他预计,Arm处理器及其生态系统“将在未来十年内主导企业异构计算市场”。
面向边缘的新型架构
异构计算是一种相对较新的系统设计形式,在芯片上结合了不止一种处理器,包括传统CPU、GPU、ASIC以及FPGA,还有专门为机器学习设计新型处理器——神经处理单元。
移动设备制造商在产品中采用异构计算硬件由来已久,但是数据中心已经被传统的、复杂的指令集芯片架构所主导,这些体系结构经过优化可高速处理串行任务。Floyer认为,随着边缘计算的兴起,这一切都将发生改变。
边缘架构将大量智能性置于收集数据的网络边缘,而且其中大部分处理都是实时完成的,只有少量数据会穿越网络到达中央云。最常见的例子是自动驾驶型汽车,这种汽车将处理器配置到车辆中,以便能够做出瞬时决策,仅通过网络传递摘要或者异常数据。
这种系统是基于矩阵工作负载的,这是一种涉及处理大量实时数据的应用,例如上面提到的自动驾驶汽车的例子。矩阵工作负载必须根据需要进行并行处理,因此不适用于以串行为主导的传统计算架构。
但是,基于Arm的异构计算机架构是一个理想选择,处理器和有限的中间存储介质之间的连接是灵活的、低延迟的、高带宽的。这种架构采用传统的SRAM而不是传统的DRAM,前者的架构更高,但速度更快,功耗降低达99%。由于矩阵工作负载会小批量处理信息并丢弃大量信息,因此SRAM的成本和容量限制不是一个特别重要的问题。
但是Floyer认为,Arm架构的应用将不仅限于网络边缘,还将有更广泛的应用范围。如果让矩阵和传统工作负载分别运行在基于Arm的苹果iPhone 11和基于英特尔Ice Lake处理器的PC,会发现在运行传统工作负载时,iPhone仅慢了5%,但成本却降低了70%多。在运行矩阵工作负载时,iPhone的速度提高了50倍,而成本却降低了99%。Arm系统的四年电费也能降低99%。
Floyer表示,由于处理器设计和制造的分离,Arm正在退出x86市场。例如,特斯拉通过使用Arm设计打造了一台车载计算机,在三年时间内,实现每秒处理来自8个摄像头的10亿个像素,以及对来雷达、12个超声传感器、GPS和多个内部车辆传感器的数据进行流式处理。Floyer写道:“如果处理器设计和制造不分离的话,本来这些需要六年多时间,而且要冒着可能失败的巨大风险。”
好文章,需要你的鼓励
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。