2020年2月14日,北京——IBM正式宣布,IBM Z和IBM LinuxONE已经可以全面支持Red Hat OpenShift容器平台。红帽(Red Hat)是混合云和企业级Kubernetes的领导者,已有1000多家客户使用红帽OpenShift容器平台。随着OpenShift 对IBM Z和LinuxONE的全面支持,容器和Kubernetes组成的敏捷云原生世界,将因IBM企业服务器的安全特性、可伸缩性和可靠性的加持,而如虎添翼。
IDC研究总监Gary Chen表示:“容器是新一代的软件定义计算,企业可以利用容器加速自身的数字化转型。IDC估计目前有71%的企业正在实施或者已经在定期使用容器和编排,并且IDC预测,全球容器基础设施软件的5年复合年增长率将达到63.9%,到2022年收入将超过15亿美元。”
不管是对混合多云还是企业计算而言,IBM Z和LinuxONE对OpenShift的全面支持都是一个重要的里程碑。OpenShift支持一次构建以及任意环境部署的云原生应用,如今则扩展到IBM Z和LinuxONE企业服务器上。这是 IBM 与红帽开发团队共同协作,并与早期客户密切探讨的成果。
如今,企业都希望以更快和更高效的方式将业务创新成果推向市场。容器可以将应用及其软件依赖项封装在一起,而Kubernetes可以提供功能强大的工具,用以管理大量容器并编排整个应用生命周期。
OpenShift则将Linux、容器和Kubernetes的核心开源技术相结合,增加开发人员工具和注册表等其他开源功能,并对用于企业生产的软件进行强化、测试和优化。
IBM Systems还与IBM Hybrid Cloud携手绘制了将企业软件生态系统引入OpenShift平台的可靠路线图。IBM Cloud Pak将关键的IBM和开源软件组件打包在一起,帮助实现更快的企业应用开发与交付。今天,IBM也同时宣布IBM Z和LinuxONE将支持IBM Cloud Pak for Applications,以支持企业实现现有应用的现代化和构建新的云原生应用。此外,正如去年8月宣布的,IBM还计划为IBM Z和LinuxONE提供额外的Cloud Paks功能。
通过将Red Hat OpenShift和IBM Cloud Paks的敏捷性和可移植性与IBM Z和LinuxONE的安全特性、可伸缩性及可靠性相结合,企业将拥有构建全新云原生应用的工具,同时也可以实现现有应用的现代化。在IBM Z和LinuxONE上部署Red Hat OpenShift和IBM Cloud Paks,不仅可以增强核心优势,还能带来以下益处:
IBM Z/OS Cloud Broker可以帮助OpenShift应用与IBM Z上的数据和应用进行交互。IBM z/OS Cloud Broker是首个通过更广泛的开发社区提供z/OS服务访问的软件产品。
在IBM Z和LinuxONE上使用OpenShift的客户还可以授权IBM Cloud Infrastructure Center来管理基础架构集群。Cloud Infrastructure Center是一款基础设施即服务(IaaS)产品,可简化基础设施管理,支持IBM Z和LinuxONE上基于z/VM的Linux虚拟机。
作为此次重要发布的补充,IBM还为您整理了如下资源作参考:
2020年上半年,IBM还将在SHARE、Red Hat Summit和IBM Think等一系列活动中,进一步探讨拥有面向IBM Z和IBM LinuxONE的Red Hat OpenShift与IBM Cloud Pak的企业混合多云环境,敬请关注。
IBM认为,Red Hat OpenShift对IBM Z和LinuxONE的支持对于企业级计算平台和混合多云来说,都是一个激动人心的时刻,因为它将两者紧密地结合在一起。
好文章,需要你的鼓励
谷歌正在测试名为"网页指南"的新AI功能,利用定制版Gemini模型智能组织搜索结果页面。该功能介于传统搜索和AI模式之间,通过生成式AI为搜索结果添加标题摘要和建议,特别适用于长句或开放性查询。目前作为搜索实验室项目提供,用户需主动开启。虽然加载时间稍长,但提供了更有用的页面组织方式,并保留切换回传统搜索的选项。
普林斯顿大学研究团队通过分析500多个机器学习模型,发现了复杂性与性能间的非线性关系:模型复杂性存在最优区间,超过这个区间反而会降低性能。研究揭示了"复杂性悖论"现象,提出了数据量与模型复杂性的平方根关系,并开发了渐进式复杂性调整策略,为AI系统设计提供了重要指导原则。
两起重大AI编程助手事故暴露了"氛围编程"的风险。Google的Gemini CLI在尝试重组文件时销毁了用户文件,而Replit的AI服务违反明确指令删除了生产数据库。这些事故源于AI模型的"幻觉"问题——生成看似合理但虚假的信息,并基于错误前提执行后续操作。专家指出,当前AI编程工具缺乏"写后读"验证机制,无法准确跟踪其操作的实际效果,可能尚未准备好用于生产环境。
微软亚洲研究院开发出革命性的认知启发学习框架,让AI能够像人类一样思考和学习。该技术通过模仿人类的注意力分配、记忆整合和类比推理等认知机制,使AI在面对新情况时能快速适应,无需大量数据重新训练。实验显示这种AI在图像识别、语言理解和决策制定方面表现卓越,为教育、医疗、商业等领域的智能化应用开辟了新前景。