2020年2月14日,北京——IBM正式宣布,IBM Z和IBM LinuxONE已经可以全面支持Red Hat OpenShift容器平台。红帽(Red Hat)是混合云和企业级Kubernetes的领导者,已有1000多家客户使用红帽OpenShift容器平台。随着OpenShift 对IBM Z和LinuxONE的全面支持,容器和Kubernetes组成的敏捷云原生世界,将因IBM企业服务器的安全特性、可伸缩性和可靠性的加持,而如虎添翼。
IDC研究总监Gary Chen表示:“容器是新一代的软件定义计算,企业可以利用容器加速自身的数字化转型。IDC估计目前有71%的企业正在实施或者已经在定期使用容器和编排,并且IDC预测,全球容器基础设施软件的5年复合年增长率将达到63.9%,到2022年收入将超过15亿美元。”
不管是对混合多云还是企业计算而言,IBM Z和LinuxONE对OpenShift的全面支持都是一个重要的里程碑。OpenShift支持一次构建以及任意环境部署的云原生应用,如今则扩展到IBM Z和LinuxONE企业服务器上。这是 IBM 与红帽开发团队共同协作,并与早期客户密切探讨的成果。
如今,企业都希望以更快和更高效的方式将业务创新成果推向市场。容器可以将应用及其软件依赖项封装在一起,而Kubernetes可以提供功能强大的工具,用以管理大量容器并编排整个应用生命周期。
OpenShift则将Linux、容器和Kubernetes的核心开源技术相结合,增加开发人员工具和注册表等其他开源功能,并对用于企业生产的软件进行强化、测试和优化。
IBM Systems还与IBM Hybrid Cloud携手绘制了将企业软件生态系统引入OpenShift平台的可靠路线图。IBM Cloud Pak将关键的IBM和开源软件组件打包在一起,帮助实现更快的企业应用开发与交付。今天,IBM也同时宣布IBM Z和LinuxONE将支持IBM Cloud Pak for Applications,以支持企业实现现有应用的现代化和构建新的云原生应用。此外,正如去年8月宣布的,IBM还计划为IBM Z和LinuxONE提供额外的Cloud Paks功能。
通过将Red Hat OpenShift和IBM Cloud Paks的敏捷性和可移植性与IBM Z和LinuxONE的安全特性、可伸缩性及可靠性相结合,企业将拥有构建全新云原生应用的工具,同时也可以实现现有应用的现代化。在IBM Z和LinuxONE上部署Red Hat OpenShift和IBM Cloud Paks,不仅可以增强核心优势,还能带来以下益处:
IBM Z/OS Cloud Broker可以帮助OpenShift应用与IBM Z上的数据和应用进行交互。IBM z/OS Cloud Broker是首个通过更广泛的开发社区提供z/OS服务访问的软件产品。
在IBM Z和LinuxONE上使用OpenShift的客户还可以授权IBM Cloud Infrastructure Center来管理基础架构集群。Cloud Infrastructure Center是一款基础设施即服务(IaaS)产品,可简化基础设施管理,支持IBM Z和LinuxONE上基于z/VM的Linux虚拟机。
作为此次重要发布的补充,IBM还为您整理了如下资源作参考:
2020年上半年,IBM还将在SHARE、Red Hat Summit和IBM Think等一系列活动中,进一步探讨拥有面向IBM Z和IBM LinuxONE的Red Hat OpenShift与IBM Cloud Pak的企业混合多云环境,敬请关注。
IBM认为,Red Hat OpenShift对IBM Z和LinuxONE的支持对于企业级计算平台和混合多云来说,都是一个激动人心的时刻,因为它将两者紧密地结合在一起。
好文章,需要你的鼓励
随着AI模型参数达到数十亿甚至万亿级别,工程团队面临内存约束和计算负担等共同挑战。新兴技术正在帮助解决这些问题:输入和数据压缩技术可将模型压缩50-60%;稀疏性方法通过关注重要区域节省资源;调整上下文窗口减少系统资源消耗;动态模型和强推理系统通过自学习优化性能;扩散模型通过噪声分析生成新结果;边缘计算将数据处理转移到网络端点设备。这些创新方案为构建更高效的AI架构提供了可行路径。
清华大学团队开发了CAMS智能框架,这是首个将城市知识大模型与智能体技术结合的人类移动模拟系统。该系统仅需用户基本信息就能在真实城市中生成逼真的日常轨迹,通过三个核心模块实现了个体行为模式提取、城市空间知识生成和轨迹优化。实验表明CAMS在多项指标上显著优于现有方法,为城市规划、交通管理等领域提供了强大工具。
Meta以143亿美元投资Scale AI,获得49%股份,这是该公司在AI竞赛中最重要的战略举措。该交易解决了Meta在AI发展中面临的核心挑战:获取高质量训练数据。Scale AI创始人王亚历山大将加入Meta领导新的超级智能研究实验室。此次投资使Meta获得了Scale AI在全球的数据标注服务,包括图像、文本和视频处理能力,同时限制了竞争对手的数据获取渠道。
MIT研究团队发现了一个颠覆性的AI训练方法:那些通常被丢弃的模糊、失真的"垃圾"图片,竟然能够训练出比传统方法更优秀的AI模型。他们开发的Ambient Diffusion Omni框架通过智能识别何时使用何种质量的数据,不仅在ImageNet等权威测试中创造新纪录,还为解决AI发展的数据瓶颈问题开辟了全新道路。