全新AutoAI功能将通过自动化和加速时间密集型数据流程,加速人工智能开发,同时解放数据科学家,使他们能够更加专注于机器学习
IBM宣布推出AutoAI,这是IBM Watson Studio上又一全新功能,旨在帮助企业实现人工智能设计、优化和管理等环节的自动化。如此,数据科学家们便可以腾出更多时间投入到机器学习模型的设计、测试和部署等工作上来。
尽管人们已经意识到人工智能在商业中越来越高的战略价值,但大多数组织还仍在努力应对基础信息架构方面的挑战。寻找、收集和整理零散、孤立的数据,并将这些数据准备好用作分析与机器学习,这些繁琐的工作往往减慢了人工智能的开发。Forrester近期发表的一篇报告中称,60%的受访者表示,管理数据质量是实现人工智能所面临的最大挑战之一,另有44%的受访者将这一挑战归结为数据的准备。
对于没有数据科学家的企业来说,人工智能项目面临着更大的挑战。IBM商业价值研究院在一项题为《向企业级人工智能的转变》(Shifting Toward Enterprise-Grade AI) 的研究中指出,63%的受访者表示,缺乏适当的技术、技能是企业实施人工智能所面临的主要挑战。
Watson Studio全新AutoAI功能与Watson Machine Learning相结合,将能够帮助企业加速并实现人工智能生命周期中各个步骤的自动化,从而解决上述挑战。
全新AutoAI功能专门为加速企业人工智能开发而设计,使那些极其耗时的数据准备和预处理环节实现自动化,例如模型开发、功能工程等。目前,企业已可以在基于IBM云的Watson Studio上使用此功能。AutoAI的推出是为了使用户能够利用超参数(hyperparameter)优化功能,更轻松地构建数据科学和人工智能模型。此外,AutoAI还包含一套强大的企业级数据科学模型集,如梯度增强树(gradient boosted trees)等,帮助用户快速扩展机器学习实验并完成部署。
IBM大数据与人工智能业务总经理Rob Thomas表示:“IBM始终与客户保持密切合作,为他们规划通往人工智能的路径,而许多客户面临的首要挑战之一便是数据准备,这是人工智能的基础步骤。我们已经发现,对于一些成熟企业而言,数据基础架构的复杂性让人望而生畏,而对于那些几乎没有或根本没有技术资源的企业来说,这种复杂性更是根本无法驾驭的。我们为Watson Studio提供的自动化功能旨在简化流程,帮助客户更快地构建机器学习模型和实验。”
AutoAI系列还包括IBM Neural Networks Synthesis(NeuNetS),这一技术于去年秋天首次亮相,目前在Watson Studio项目中处于公测阶段。这一技术能够使用户通过人工智能自动合成定制化的神经网络,快速跟踪深度学习模型的开发。NeuNetS使用户能够在优化速度和精度方面进行选择,并实时观察模型的构建并进行自我训练。
Watson Studio AutoAI利用IBM研究院开发的关键技术,基于IBM多年来一直在开发和提供的诸多自动化功能,为包括IBM Watson Assistant、IBM Watson Discovery与IBM Watson Machine Learning在内的各种解决方案都提供了不同程度的自动化,加快并简化了极其耗时的任务与环节,使客户能够更快地专注于具有更高价值的工作。
好文章,需要你的鼓励
AWS re:Invent大会展示了亚马逊在智能代理AI和定制模型方面的重大进展,包括AgentCore平台更新和Nova Forge服务发布。英伟达CEO黄仁勋在独家访谈中预测AI工厂将在边缘计算中普及,形成分布式智能工厂模型。尽管谷歌和亚马逊推出自研芯片挑战英伟达,但英伟达凭借CUDA生态系统优势仍将保持市场主导地位。地缘政治因素可能重塑半导体格局,台积电地位关键。
波恩大学研究团队首次量化AI训练的材料成本,发现一块GPU含32种元素,93%为重金属。训练GPT-4需消耗约7吨金属材料,其中多为有毒重金属。研究建立了从计算需求到硬件消耗的评估框架,发现通过软硬件优化可减少93%的资源消耗。该研究揭示了AI发展的隐性环境代价,呼吁行业从规模竞赛转向效率革命,实现可持续发展。
Lumen技术CTO戴夫·沃德指出,当前互联网基础设施无法满足AI工作负载和数据流量需求。AI兴起与企业对云计算需求的演变正推动新的云经济和"云2.0"概念。他预测未来3-5年将出现支持下一代需求的云基础设施。CIO需要重新设计企业网络架构,摆脱传统的集线器辐射式设计,采用多云直连模式来适应AI时代要求。
南开大学团队构建了迄今最大规模的结肠镜AI数据库COLONVQA,包含110万视觉问答条目。他们发现现有AI模型存在泛化能力不足和容易被误导等问题,因此开发了首个具备临床推理能力的结肠镜AI模型COLONR1。该模型采用多专家辩论机制生成推理数据,在综合评估中准确率达56.61%,比传统方法提升25.22%,为智能结肠镜诊断从图像识别向临床推理的转变奠定了基础。