全新AutoAI功能将通过自动化和加速时间密集型数据流程,加速人工智能开发,同时解放数据科学家,使他们能够更加专注于机器学习
IBM宣布推出AutoAI,这是IBM Watson Studio上又一全新功能,旨在帮助企业实现人工智能设计、优化和管理等环节的自动化。如此,数据科学家们便可以腾出更多时间投入到机器学习模型的设计、测试和部署等工作上来。
尽管人们已经意识到人工智能在商业中越来越高的战略价值,但大多数组织还仍在努力应对基础信息架构方面的挑战。寻找、收集和整理零散、孤立的数据,并将这些数据准备好用作分析与机器学习,这些繁琐的工作往往减慢了人工智能的开发。Forrester近期发表的一篇报告中称,60%的受访者表示,管理数据质量是实现人工智能所面临的最大挑战之一,另有44%的受访者将这一挑战归结为数据的准备。
对于没有数据科学家的企业来说,人工智能项目面临着更大的挑战。IBM商业价值研究院在一项题为《向企业级人工智能的转变》(Shifting Toward Enterprise-Grade AI) 的研究中指出,63%的受访者表示,缺乏适当的技术、技能是企业实施人工智能所面临的主要挑战。
Watson Studio全新AutoAI功能与Watson Machine Learning相结合,将能够帮助企业加速并实现人工智能生命周期中各个步骤的自动化,从而解决上述挑战。
全新AutoAI功能专门为加速企业人工智能开发而设计,使那些极其耗时的数据准备和预处理环节实现自动化,例如模型开发、功能工程等。目前,企业已可以在基于IBM云的Watson Studio上使用此功能。AutoAI的推出是为了使用户能够利用超参数(hyperparameter)优化功能,更轻松地构建数据科学和人工智能模型。此外,AutoAI还包含一套强大的企业级数据科学模型集,如梯度增强树(gradient boosted trees)等,帮助用户快速扩展机器学习实验并完成部署。
IBM大数据与人工智能业务总经理Rob Thomas表示:“IBM始终与客户保持密切合作,为他们规划通往人工智能的路径,而许多客户面临的首要挑战之一便是数据准备,这是人工智能的基础步骤。我们已经发现,对于一些成熟企业而言,数据基础架构的复杂性让人望而生畏,而对于那些几乎没有或根本没有技术资源的企业来说,这种复杂性更是根本无法驾驭的。我们为Watson Studio提供的自动化功能旨在简化流程,帮助客户更快地构建机器学习模型和实验。”
AutoAI系列还包括IBM Neural Networks Synthesis(NeuNetS),这一技术于去年秋天首次亮相,目前在Watson Studio项目中处于公测阶段。这一技术能够使用户通过人工智能自动合成定制化的神经网络,快速跟踪深度学习模型的开发。NeuNetS使用户能够在优化速度和精度方面进行选择,并实时观察模型的构建并进行自我训练。
Watson Studio AutoAI利用IBM研究院开发的关键技术,基于IBM多年来一直在开发和提供的诸多自动化功能,为包括IBM Watson Assistant、IBM Watson Discovery与IBM Watson Machine Learning在内的各种解决方案都提供了不同程度的自动化,加快并简化了极其耗时的任务与环节,使客户能够更快地专注于具有更高价值的工作。
好文章,需要你的鼓励
Cato Networks 推出全球首个基于 SASE 的局域网新一代防火墙 (NGFW),实现了局域网和云防火墙的完全融合。该方案旨在解决企业平均需要 55 天才能修复 50% 关键漏洞的问题,通过自更新和自维护功能,消除了手动打补丁和紧急修复的需求,为企业提供始终最新的安全防护。
WhatsApp 正在测试新的消息主题功能,该功能将允许用户更好地组织和跟踪群聊中的对话。继上月推出彩色聊天主题、关联社交媒体账号以及支持图片和语音的 ChatGPT 功能后,这项新功能将进一步提升用户体验,特别是在繁忙的群聊中追踪特定话题时更为便捷。
Orange 与卫星运营商 Telesat 建立战略商业合作伙伴关系,通过在法国贝尔塞奈昂奥特建设 Telesat Lightspeed 地面站,结合 Orange 在 26 个国家和地区的地面站网络,为偏远地区提供低延迟、安全可靠的卫星通信服务。此次合作将增强 Orange 的全球数字基础设施韧性,促进偏远地区的数字包容。
世界宽带协会 (WBBA) 研究表明,人工智能在网络领域已发挥重要作用,特别是在宽带部署前期阶段的应用可以优化基础设施投资并提升收益。同时,Net5.5G 网络架构的全球应用案例,以及 Wi-Fi 通话等新技术的发展,都将推动下一代智能互联网络的实现。