至顶网服务器频道 05月22日 新闻消息: 2019年 5月 21日,基于现场可编程门阵列(FPGA)的硬件加速器件和高性能嵌入式FPGA(eFPGA)半导体知识产权(IP)领导性企业Achronix半导体公司(Achronix Semiconductor Corporation)宣布:推出创新性的、全新的FPGA系列产品,以满足人工智能/机器学习(AI/ML)和高带宽数据加速应用日益增长的需求。Achronix的Speedster 7t系列基于一种高度优化的全新架构,以其所具有的如同ASIC一样的性能、可简化设计的FPGA灵活性和增强功能,从而远远超越传统的FPGA解决方案。
* 全新Speedster7t系列产品专为机器学习市场和高带宽网络应用而进行了优化
* 创新架构和ACE软件工具为要求更高性能和更短设计周期的设计提供了全新范式
* Speedster7t器件采用台积电(TSMC)的7nm FinFET工艺制造
Speedster7t FPGA系列产品是专为高带宽应用进行设计,具有一个革命性的全新二维片上网络(2D NoC),以及一个高密度全新机器学习处理器(MLP)模块阵列。通过将FPGA的可编程性与ASIC的布线结构和计算引擎完美地结合在一起,Speedster7t系列产品创造了一类全新的“FPGA +”技术。
随着人工智能/机器学习的应用场景快速发展演进,新的解决方案都要去应对在高性能、灵活和上市时间等方面的不同需求。根据市场调研公司Semico Research的预测,人工智能应用中FPGA的市场规模将在未来4年内增长3倍,达到52亿美元。
“我们正处于智能化、自学习计算的高增长阶段的早期,这种计算将广泛影响我们日的常生活。”Achronix Semiconductor总裁兼首席执行官Robert Blake表示:“Speedster7t是Achronix历史上最令人激动的发布,代表了建立在四个架构代系的硬件和软件开发基础上的创新和积淀,以及与我们领先客户之间的密切合作。Speedster7t是灵活的FPGA技术与ASIC核心效率的融合,从而提供了一个全新的‘FPGA+’芯片品类,它们可以将高性能技术的极限大大提升。”
在开发Speedster7t系列FPGA的产品过程中,Achronix的工程团队完全重新构想了整个FPGA架构,以平衡片上处理、互连和外部输入输出接口(I / O),以实现数据密集型应用吞吐量的最大化,这些应用场景可见于那些基于边缘和基于服务器的AI / ML应用、网络处理和存储。
Speedster7t器件采用了TSMC的7nm FinFET工艺制造,是专为接收来自多个高速来源的大量数据而设计,同时还需要将那些数据分发到可编程片上算法性和处理性单元中,然后以尽可能低的延迟来提供那些结果。Speedster7t系列产品包括高带宽GDDR6接口、400G以太网端口和PCI Express Gen5等接口,所有这一切单元都互相连接以提供ASIC级带宽,同时保留FPGA的完全可编程性。
“Achronix全新的Speedster7t FPGA系列产品是创新性芯片架构实现爆发的一个卓越案例,创造该架构的目的是直接面向AI应用处理大量的数据,” Semico Research公司ASIC和SoC首席市场分析师Rich Wawrzyniak说道。“通过将数学函数、存储器和可编程性整合到其机器学习处理器中,再结合交叉芯片、二维NoC结构,从而形成了消除瓶颈和确保整个器件中数据自由流动的绝佳方法。在AI / ML应用中,内存带宽就是一切,Achronix的Speedster7t在这一领域提供了令人印象深刻的性能指标。”
Speedster7t FPGA的核心是其全新机器学习处理器(MLP)中大规模的可编程计算单元平行阵列,它们可提供业界最高的、基于FPGA的计算密度。MLP是高度可配置的、计算密集型的单元模块,可支持4到24位的整点格式和高效的浮点模式,包括对TensorFlow的16位格式的支持,以及可使每个MLP的计算引擎加倍的增压块浮点格式的直接支持。
MLP与嵌入式存储器模块紧密相邻,通过消除传统设计中与FPGA布线相关的延迟,来确保以750 MHz的最高性能将数据传送到MLP。这种高密度计算和高性能数据传输的结合使得处理器逻辑阵列能够提供基于FPGA的最高可用计算能力以每秒万亿次运算数量为单位(TOPS,Tera-Operations Per Second)。
高性能计算和机器学习系统的关键之处是高片外存储器带宽,从而为多个数据流提供存储源和缓冲。 Speedster7t器件是唯一支持GDDR6存储器的FPGA,该类存储器是具有最高带宽的外部存储器件。每个GDDR6存储控制器都能够支持512 Gbps的带宽,Speedster7t器件中有多达8个GDDR6控制器,可以支持4 Tbps的GDDR6累加带宽,并且以很小的成本就可提供与基于HBM的FPGA等效存储带宽。
“美光(Micron)乐于携手Achronix去实现全球第一个面向高带宽存储需求而直接加载了GDDR6的FPGA产品,”美光计算与联网业务部营销副总裁Mal Humphrey。“像这样的创新的和可扩展的解决方案将推动人工智能领域内的差异化,其中异构计算可选方案与高性能的存储是加速获得数据内涵的必需部分。”
除了这种非凡的存储带宽,Speedster7t器件还包括业界最高性能的接口端口,以支持极高带宽的数据流。Speedster7t器件拥有多达72个业界最高性能的SerDes,可以达到1到112 Gbps的速度。还有带有前向纠错(FEC)的硬件400G以太网MAC,支持4x 100G和8x 50G的配置,以及每个控制器有8个或16个通道的硬件PCI Express Gen5控制器。
来自Speedster7t高速I / O和存储器端口的数万兆比特数据很容易淹没传统FPGA面向比特位的可编程互连逻辑阵列的路由容量,而Speedster7t架构包含一个可横跨和垂直跨越FPGA逻辑阵列的创新性的、高带宽的二维片上网络(NOC),它们连接到所有FPGA的高速数据和存储器接口。它们就像叠加在FPGA互连这个城市街道系统上的空中高速公路网络一样,Speedster7t的NoC支持片上处理引擎之间所需的高带宽通信。NoC中的每一行或每一列都可作为两个256位实现,单向的、行业标准的AXI通道,工作频率为2Ghz,同时可为每个方向提供512 Gbps的数据流量。
通过在Speedster中实现专用二维 NoC, 极大地简化了高速数据移动,并确保数据流可以轻松地定向到整个FPGA结构中的任何自定义处理引擎。最重要的是,NOC消除了传统FPGA使用可编程路由和逻辑查找表资源在整个FPGA中移动数据流中出现的拥塞和性能瓶颈。这种高性能网络不仅可以提高Speedster7t FPGA的总带宽容量,还可以在降低功耗的同时提高有效LUT容量。
Speedster7t FPGA系列产品在面临第三方攻击的威胁时,可用最先进的比特流安全保护功能应对,它们具有的多层防御能力可保护比特流的保密性和完整性。密钥是基于防篡改物理不可克隆技术(PUF)进行加密,比特流由256位的AES-GCM加密算法进行加密和验证。为了防止来自旁侧信道的攻击,比特流被分段,每个数据段使用单独导出的密钥,且解密硬件采用差分功率分析(DPA)计数器措施。 此外,2048位RSA公钥认证协议被用来激活解密和认证硬件。用户可以确信的是当他们加载其安全比特流时,它是预期的配置,这是因为它已通过RSA公钥、AES-GCM私钥和CRC校验进行了身份验证。
Achronix是唯一一家既提供独立FPGA芯片又提供Speedcore™嵌入式FPGA(eFPGA)半导体知识产权( IP)的公司。Achronix在Speedcore eFPGA IP中采用了与Speedster7t FPGA中使用的同一种技术,可支持从Speedster7t FPGA到ASIC的无缝转换。FPGA应用通常具有必须保持可编程性的功能,而其他固定功能则是专用于特定的系统应用。对于ASIC的转换而言,固定功能可以被固化进ASIC结构中,从而减小芯片面积、成本和功耗。当使用Speedcore eFPGA IP将Speedster7t FPGA转换为ASIC时,客户有望节省高达50%的功耗并降低90%的成本。
Speedster7t FPGA器件的大小范围为从363K至2.6M 的6输入查找表(LUT)。支持所有Achronix产品的ACE设计工具现已可提供,可支持包括Speedcore eFPGA和Speedchip™FPGA多晶粒封装芯片(Chiplet)。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。