在数据分析、机器学习和深度学习领域中工作的数据科学家们将能够借助NVIDIA全新CUDA-X AI库实现速度的大幅提升。
CUDA-X能够充分利用Tensor Core GPU的延展性,为以下领域提供加速:
CUDA-X加速数据科学。
在本届NVIDIA的GTC大会上推出的CUDA-X AI是唯一针对数据科学加速的端到端平台。
随着企业转而采用深度学习、机器学习和数据分析等人工智能技术来更有效地利用数据, CUDA-X AI也应运而生。
适用于数据处理、功能判定、训练、验证和部署的典型工作流程,CUDA-X AI让我们能够充分利用NVIDIA Tensor Core GPU的延展性来独特地处理此类端到端的AI管道。
CUDA-X AI包含十几个专用加速库,能够将机器学习和数据科学工作负载加速至高达50倍。它已经在通过cuDF加速数据分析;通过cuDNN加速深度学习原语;通过cuML加速机器学习算法;通过DALI加速数据处理等。
这些库结合在一起,就能够为典型AI工作流程中的每一步提供加速,无论是使用深度学习来训练语音和图像识别系统,还是通过数据分析来评估抵押贷款组合的风险状况。这些工作流程中的每一步都需要处理大量数据,且每一步都能够受益于GPU加速计算。
因此,CUDA-X AI已得到渣打银行、微软、PayPal、SAS和沃尔玛等顶尖公司所采用。它已集成至主流深度学习框架中,如TensorFlow、PyTorch和MXNet。全球主要云服务提供商均在使用CUDA-X AI来加速自身云服务。今日,全球八大计算机制造商宣布其数据科学工作站和服务器经优化后能够运行NVIDIA的CUDA-X AI库。
CUDA-X AI加速库可单独下载,亦作为NVIDIA NGC软件中心的容器化软件堆栈提供,均为免费。
其可部署于任何地方,包括台式机、工作站、服务器和云计算平台。
于昨日GTC发布的所有数据科学工作站中均已集成CUDA-X AI。且昨日发布的所有NVIDIA T4服务器均经优化,能够运行CUDA-X AI。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
研究表明,现有的公开 AI 模型在描述大屠杀历史时过于简单化,无法呈现其复杂性和细微之处。研究人员呼吁各相关机构数字化资料和专业知识,以改善 AI 对这段历史的理解和表述。他们强调需要在 AI 系统中加入更多高质量的数据,同时在审查和信息获取之间寻求平衡。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。