在数据分析、机器学习和深度学习领域中工作的数据科学家们将能够借助NVIDIA全新CUDA-X AI库实现速度的大幅提升。
CUDA-X能够充分利用Tensor Core GPU的延展性,为以下领域提供加速:
CUDA-X加速数据科学。
在本届NVIDIA的GTC大会上推出的CUDA-X AI是唯一针对数据科学加速的端到端平台。
随着企业转而采用深度学习、机器学习和数据分析等人工智能技术来更有效地利用数据, CUDA-X AI也应运而生。
适用于数据处理、功能判定、训练、验证和部署的典型工作流程,CUDA-X AI让我们能够充分利用NVIDIA Tensor Core GPU的延展性来独特地处理此类端到端的AI管道。
CUDA-X AI包含十几个专用加速库,能够将机器学习和数据科学工作负载加速至高达50倍。它已经在通过cuDF加速数据分析;通过cuDNN加速深度学习原语;通过cuML加速机器学习算法;通过DALI加速数据处理等。
这些库结合在一起,就能够为典型AI工作流程中的每一步提供加速,无论是使用深度学习来训练语音和图像识别系统,还是通过数据分析来评估抵押贷款组合的风险状况。这些工作流程中的每一步都需要处理大量数据,且每一步都能够受益于GPU加速计算。
因此,CUDA-X AI已得到渣打银行、微软、PayPal、SAS和沃尔玛等顶尖公司所采用。它已集成至主流深度学习框架中,如TensorFlow、PyTorch和MXNet。全球主要云服务提供商均在使用CUDA-X AI来加速自身云服务。今日,全球八大计算机制造商宣布其数据科学工作站和服务器经优化后能够运行NVIDIA的CUDA-X AI库。
CUDA-X AI加速库可单独下载,亦作为NVIDIA NGC软件中心的容器化软件堆栈提供,均为免费。
其可部署于任何地方,包括台式机、工作站、服务器和云计算平台。
于昨日GTC发布的所有数据科学工作站中均已集成CUDA-X AI。且昨日发布的所有NVIDIA T4服务器均经优化,能够运行CUDA-X AI。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。