在数据分析、机器学习和深度学习领域中工作的数据科学家们将能够借助NVIDIA全新CUDA-X AI库实现速度的大幅提升。
CUDA-X能够充分利用Tensor Core GPU的延展性,为以下领域提供加速:
CUDA-X加速数据科学。
在本届NVIDIA的GTC大会上推出的CUDA-X AI是唯一针对数据科学加速的端到端平台。
随着企业转而采用深度学习、机器学习和数据分析等人工智能技术来更有效地利用数据, CUDA-X AI也应运而生。
适用于数据处理、功能判定、训练、验证和部署的典型工作流程,CUDA-X AI让我们能够充分利用NVIDIA Tensor Core GPU的延展性来独特地处理此类端到端的AI管道。
CUDA-X AI包含十几个专用加速库,能够将机器学习和数据科学工作负载加速至高达50倍。它已经在通过cuDF加速数据分析;通过cuDNN加速深度学习原语;通过cuML加速机器学习算法;通过DALI加速数据处理等。
这些库结合在一起,就能够为典型AI工作流程中的每一步提供加速,无论是使用深度学习来训练语音和图像识别系统,还是通过数据分析来评估抵押贷款组合的风险状况。这些工作流程中的每一步都需要处理大量数据,且每一步都能够受益于GPU加速计算。
因此,CUDA-X AI已得到渣打银行、微软、PayPal、SAS和沃尔玛等顶尖公司所采用。它已集成至主流深度学习框架中,如TensorFlow、PyTorch和MXNet。全球主要云服务提供商均在使用CUDA-X AI来加速自身云服务。今日,全球八大计算机制造商宣布其数据科学工作站和服务器经优化后能够运行NVIDIA的CUDA-X AI库。
CUDA-X AI加速库可单独下载,亦作为NVIDIA NGC软件中心的容器化软件堆栈提供,均为免费。
其可部署于任何地方,包括台式机、工作站、服务器和云计算平台。
于昨日GTC发布的所有数据科学工作站中均已集成CUDA-X AI。且昨日发布的所有NVIDIA T4服务器均经优化,能够运行CUDA-X AI。
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。