当你想到信用卡被盗所带来的不便、愤怒和可能造成的损失时,还不是痛苦的全部,更令人生气的是被盗的每一个卡号销赃費只有10至15美分,真是伤口上撒盐!
然而,你是否知道你被盗的医疗记录可以卖到30到500美元?
这些数字出现在去年CBSN On Assignment的新闻节目,是关于美国纽约伊利县医疗中心遭勒索软件攻击的报道。
这家医院最后没有支付4万4千美元的赎金,而是在恢复网络服务前的六星期内使用铅笔和纸张来作业。这是近期一些备受瞩目的医院网络遭受攻击事件中的一例。
我们知道,病患的个人信息极具隐私性,医疗记录需要被严格保护。当医院的医疗保健系统漏洞遭受攻击时,医院往往措手不及,甚至可能因为病历被骇客锁住,让当时的医病处理难以进行,病患因而面对生死攸关的危险。因为一直以来,资金和专业知识都投放在具有IT支持的尖端医疗技术上,而不是投放在复杂的网络安全上。因此,医院已经成为网络罪犯获取暴利而容易下手的目标。
我们需要找到有效的方法来管理大规模增长的医疗数据。
这些数据来自物联网、远程医疗到高清扫描图像….等等。这意味着医疗体系需要转向采用云计算和数据存储,如此也就提供了黑客新的切入点。医疗IT系统的边缘越模糊,防护的效果就越差,医疗界的整个系统都需要有安全意识的防范系统。
“分布式安全”的方法是目前最被推荐使用、最高效的模式。好的防御系统的网络周边和网络内部都具备多层防御能力,它对本地正常流量的敏感性,能分辨授权的内容以及异常内容。
本地硬件的免疫响应是一种即时反应,不会对软件资源的使用造成影响,让系统有充分的时间来标记警告与实施安全政策,因此,多数的威胁都在系统中枢还没有意识到之前,就已经避免掉了。
所以,这种保护效果更佳的“分布式安全”方式,应该成为现代医疗IT系统的优先选择。
好文章,需要你的鼓励
Meta宣布为Facebook Dating推出AI聊天机器人助手,帮助用户找到更匹配的对象。该AI可根据用户需求推荐特定类型的匹配者,并协助优化个人资料。同时推出Meet Cute功能,每周提供算法选择的"惊喜匹配"。尽管18-29岁用户匹配数同比增长10%,但相比Tinder的5000万日活用户仍有差距。AI功能已成为约会应用标配,Match Group等竞争对手也在大力投资AI技术。
UC Santa Cruz团队开发的OpenVision 2通过去除文本编码器,将视觉编码器训练简化为纯生成式学习,实现训练时间缩短1.5倍、内存使用减少1.8倍的显著效率提升。研究使用高质量合成数据集和token掩码策略,在保持性能的同时成功训练出10亿参数模型,挑战了CLIP式对比学习的必要性认知。
Neo4j认为已找到让生成式AI访问图数据库记录的方法。图数据库专注于数据点之间的关系建模和查询,在欺诈检测、推荐引擎等场景中表现出色。2024年4月,ISO批准了图查询语言GQL标准,Neo4j的Cypher查询语言完全符合该标准。现代工具提供拖拽式工作流程,GenAI可作为自然语言接口,将用户请求转换为Cypher查询。
华中科技大学团队开发的ReVPT系统首次让AI学会像人类一样主动选择和使用视觉分析工具解决复杂问题。通过创新的两阶段强化学习训练,该系统能根据任务需求灵活调用物体检测、深度估计等专业工具,在多项国际测试中显著超越基础模型,部分指标甚至超越商业化产品,为AI视觉推理能力提升开辟了新路径。