是的,无穷无尽的堆叠机架,构成了云计算体系的基础。
去年,全球前二十大云计算与互联网服务供应商的资本支出大幅增长至1200亿美元,而其中大部分资金都被用于为庞大的数据中心提供设备支持。
根据Synergy Research Group的调查数据,2018年谷歌与微软等企业在建筑与设备等实物性资产方面的投资额增长了43%。与此同时,电信服务供应商的资本开支数字则与2016年基本持平。
当然,这并不是说电信企业在基础设施身上花的钱比较少——Synergy解释称,在过去一年,全球四十家最大规模电信公司投入了超过2400亿美元以支持自家网络与服务。
另外,虽然电信领域的投资水平并没有明显波动,但2018年每一季度都创下了超大规模支出的新纪录,其中第四季度的投入金额更是增长到320亿美元。
面对最终统计结果,相信没人会感到意外——2018年排名前五的超大规模基础设施投入方分别为:谷歌、亚马逊、微软、Facebook以及苹果。但真正有趣的是,其支出数字与电信行业中的前五名大致相当,分别为中国移动、AT&T、Verizon、NTT以及德国电信。
Synergy公司首席分析师John Dinsdale表示,“超大规模服务运营商正在迅速成为IT世界中的核心资本支出力量。平均而言,随着云服务、电子商务、社交媒体以及在线广告在体量上的持续扩张,超大规模服务运营商的收入正以每年20%的比例增长;另外值得注意的是,领先企业正在持续投资以不断提升营收增幅。而这一切,同收入及资本支出都没什么显著增长的电信公司形成了鲜明的对比。在我们看来,这些趋势在短期之内都不会发生显著变化。”
今年1月,Synergy公司发布报告,称全球超大规模数据中心总量已经达到430座,而接下来的2个月间又有9座超大规模数据中心竣工投产。
Synergy公司并没有公布其对于“超大规模”这一表述的确切定义,仅暗示称该词汇与基础设施的成本水平有关。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。