IBM发起全新 “代码响应(Code and Response)”计划,将从波多黎各开始大规模构建、强化、测试并实施开源技术解决方案,以加速灾后恢复。
在2月12日Think 2019大会上,IBM(纽交所股票代码:IBM)宣布名为“代码响应(Code and Response)”的新部署计划,即在四年时间里投入2500万美元,把在IBM“代码行动(Call for Code)”大赛中开发的部分开源技术部署到最有需要的社区当中。“代码响应”计划汇集大规模构建、强化、测试及实施相关解决方案所需的资源,同时也将获得IBM企业全球志愿服务队(IBM Corporate Service Corps)的数百名IBM员工,以及政府和多个非政府组织合作伙伴的大力支持,共同将技术应用于生命救援。不仅如此,IBM还与克林顿全球倡议大学计划(Clinton Global Initiative University)建立了合作关系,为在校开发人员提供所需的技能和资源,助力其将创意转化为实践。在第一年中,“代码响应”计划将在波多黎各、北卡罗来纳州、大阪及喀拉拉邦等受灾地区部署实施“代码行动2018”的获胜解决方案——“Project Owl”。
IBM“代码响应”计划还将得到信息技术灾难资源中心(Information Technology Disaster Resource Center ,ITDRC)等非盈利合作伙伴的支持,针对Project Owl的软硬件配置提供反馈意见。此外,基于该机构在应对飓风“厄玛”(Irma)和“玛利亚”(Maria)席卷后的网络恢复方面拥有丰富的实践经验,还将为Project Owl在波多黎各的部署提供有价值的指导。
IBM认知应用及开发者生态系统业务部高级副总裁Bob Lord表示:“每年全球受自然灾害影响的人数接近1.6亿,仅仅通过挑战赛激发创意还远远不够。实现有效应对自然灾害必须充分挖掘全球开源生态系统的潜力,打造出可供我们在救灾现场大规模部署的可持续性解决方案。但是我们不能单打独斗,只有与合作伙伴通力合作才能使技术发挥可持续性影响。”
美国红十字会总裁兼首席执行官Gail McGovern表示:“美国红十字会对于IBM能够持续投入资源帮助因自然灾害而受困的人们表示十分感谢。我们的机构依赖于像IBM这样的投资者和创新公司,通过激发改变命运的新方法加强与自然灾害斗争的力量。”
“代码行动”倡议在2018年大获成功,共有超过10万名开发者提交了数千条关于灾难救援的解决方案。中国农业银行团队的United Aid Net (UAN)解决方案获得了第五名的好成绩,方案通过一个全球紧急援助网络,基于面部识别取款和区块链技术,允许家庭成员或好友在灾难发生期间临时共享金融服务。2019年,代码行动”创始机构David Clark Cause及IBM将再次与联合国、美国红十字会,以及Linux基金会展开合作。此外,还迎来了美国消费技术协会、凯撒医疗集团和Apttus等新的合作伙伴,也赢得了达美航空公司、美国强生、Persistent Systems 等合作伙伴的持续支持。
今天,IBM董事长、总裁兼首席执行官罗睿兰(Ginni Rometty)宣布启动“代码行动2019”并再次强调公司的承诺,即在五年内投入3000万美元用以推动该项目的发展。其目标依然是团结全球2300万名开发者和数据科学家,发挥云计算、人工智能、区块链和物联网技术的力量,创造出可持续、可规模化部署的开源技术。今年的主题是应对自然灾害中个人和社区的健康与福祉。
David Clark Cause首席执行官David Clark表示:“我们为‘代码行动’所取得的巨大成功感到激动不已。同时也为IBM及其推出的‘代码响应’计划而喝彩,它展现了IBM为改变人们命运所做出的承诺。我们为拥有IBM这样的合作伙伴感到自豪,同时也很高兴能够继续激励开发者继续探索新的解决方案,助力应对全球最为迫切的挑战。”
好文章,需要你的鼓励
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。