据IDC预计,到2021年将有75%的企业应用采用人工智能。为了更好地应对这一不断增长的市场,IBM今天推出了一款功能强大的AI优化融合系统——Spectrum AI with Nvidia DGX。
如今市场中有越来越多专门为机器学习量身定制的数据中心平台。今年9月,思科推出了一款人工智能服务器,该服务器配置了8个Nvidia顶级的Tesla V100 GPU。今年早些时候,NetApp和Pure Storage推出采用了Nvidia DGX-1的AI优化平台。
正如其名,Spectrum AI with Nvidia DGX也是基于Nvidia DGX。与思科的服务器一样,DGX-1包括8个Tesla V100 GPU,超过45000个处理核心,其中大约5000个核心被成为Tensor Cores的专用电路,可以很好地运行机器学习模型。
根据Nvidia的说法,这款芯片让DGX-1能够提供超过千万亿次的计算能力。
IBM的新系统将DGX-1与其自己的Elastic Storage Server进行搭配,后者是IBM的一个存储平台,可以提供高达1PB的可用闪存容量,采用IBM Spectrum Scale管理软件。
采用Spectrum Scale的原因有几个,其中最主要的是Spectrum Scale被用于全球最强大的超级计算机Summit。除了能够容纳大量数据外,该软件还提供了广泛的管理功能,其中有一款工具可以让IT团队将环境中的一些记录卸载到公有云上。
此外,Spectrum AI with Nvidia DGX还采用了Nvidia两个月前发布的RAPIDS框架。这是一组可以与主流AI和分析工具一起安装库,让Nvidia的GPU释放更多的计算能力。
据IBM称,Spectrum AI with Nvidia DGX适用于各种规模的项目。企业可以使用一个Elastic Storage Server和少量DGX-1设置Spectrum AI with Nvidia DGX,或者部署多个机架的设备。配备了9个DGX-1设备的一个机架可以提供高达每秒120GB的数据吞吐量,IBM表示这比测试的所有竞争对手解决方案都要多。
好文章,需要你的鼓励
第一资本就凭借着对数据资源的差异化运用成功脱颖而出。”这样的基础不仅彻底改变了该公司进军银行业的方式,还建立起良性循环,使得更好的数据支撑起更强大的分析能力,进而改善客户交互并产生出更多数据。
Fortinet有着三大重要组成部分,“安全组网”、“unified SASE(统一SASE)”、“AI赋能安全组网”过去三年同比平均增长了14.6%、21.7%、22.3%,远超行业同期的9%、19%、14%的增长率。
近日Max Chan和我们分享了Avnet公司在现代数字领域得到的经验教训,从优化云支出到利用AI提高客户满意度。
金融服务公司Discover Financial Services采用容器化方法来实现其工作负载的敏捷性和灵活性,同时探索生成式AI的长期优势。