据IDC预计,到2021年将有75%的企业应用采用人工智能。为了更好地应对这一不断增长的市场,IBM今天推出了一款功能强大的AI优化融合系统——Spectrum AI with Nvidia DGX。
如今市场中有越来越多专门为机器学习量身定制的数据中心平台。今年9月,思科推出了一款人工智能服务器,该服务器配置了8个Nvidia顶级的Tesla V100 GPU。今年早些时候,NetApp和Pure Storage推出采用了Nvidia DGX-1的AI优化平台。
正如其名,Spectrum AI with Nvidia DGX也是基于Nvidia DGX。与思科的服务器一样,DGX-1包括8个Tesla V100 GPU,超过45000个处理核心,其中大约5000个核心被成为Tensor Cores的专用电路,可以很好地运行机器学习模型。
根据Nvidia的说法,这款芯片让DGX-1能够提供超过千万亿次的计算能力。
IBM的新系统将DGX-1与其自己的Elastic Storage Server进行搭配,后者是IBM的一个存储平台,可以提供高达1PB的可用闪存容量,采用IBM Spectrum Scale管理软件。
采用Spectrum Scale的原因有几个,其中最主要的是Spectrum Scale被用于全球最强大的超级计算机Summit。除了能够容纳大量数据外,该软件还提供了广泛的管理功能,其中有一款工具可以让IT团队将环境中的一些记录卸载到公有云上。
此外,Spectrum AI with Nvidia DGX还采用了Nvidia两个月前发布的RAPIDS框架。这是一组可以与主流AI和分析工具一起安装库,让Nvidia的GPU释放更多的计算能力。
据IBM称,Spectrum AI with Nvidia DGX适用于各种规模的项目。企业可以使用一个Elastic Storage Server和少量DGX-1设置Spectrum AI with Nvidia DGX,或者部署多个机架的设备。配备了9个DGX-1设备的一个机架可以提供高达每秒120GB的数据吞吐量,IBM表示这比测试的所有竞争对手解决方案都要多。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。