IBM公司在无光刻芯片制造方向上取得可喜进展。
IBM公司已经设计出一种新型材料加工与制造工艺,有助于提高7纳米节点以及更小节点芯片的生产效率水平。
蓝色巨人的研究人员正在努力克服“区域选择性沉积”这一新兴领域中的种种挑战,此项技术有望克服光刻技术的限制,从而利用7纳米制程工艺在芯片上创建图案。
Semi Engineering对于光刻图案做出了简洁说明,同时亦解读了为何区域选择性沉积技术在7纳米制程领域拥有如此光明的发展前景(https://semiengineering.com/what-happened-to-selective-deposition/,英文原文)。
“多重图案化”等技术的介入,有助于确保集成电路的规模不断扩展。然而,随着芯片由28纳米制程缩小至7纳米制程,芯片制造商无疑需要面对更多且功能且特征更复杂的分层,且特征必须更精确地放置在对应图案之上。
这些特征需要在不同层之间保持对齐,一旦无法保持对齐,就会导致“边缘放置错误”(简称EPE)。英特尔公司光刻技术专家Yan Borodovsky认为这是一项光刻技术无法解决的挑战,并最终会成为摩尔定律的硬性天花板。
2015年,他曾鼓励业界研究区域选择性沉积技术,而这正是IBM公司研究人员正在探索的领域,且有朝一日可能成为EUV光刻技术的继承性方案。事实上,三星公司已经进行了数十年实验室研究,目前正在尝试将其引入实际生产线。
各晶圆代工厂已经在利用某种形式的选择性沉积技术在器件的金属表面上进行材料沉积。但不同于此,区域选择性沉积要求配合新的工具,旨在于器件之上沉积不同的材料组合——金属沉积于金属上,电介质沉积于电介质上。
IBM公司阿尔马登研究中心研究员Rudy J Wojtecki解释称,IBM的项目希望对这一技术加以改进:
“如果使用传统制造方法,我们需要利用抗蚀剂涂覆基板,而后通过曝光步骤对抗蚀剂进行图案化处理,从而实现图案显影、沉积无机膜,而后去除抗蚀剂以制造出图案化无机材料。”
“我们发现了一种更简单的无机薄膜沉积方法,即使用自对准工艺。我们将预先涂覆的基板浸入含有特殊材料的溶液当中,而后将涂覆基板放置于沉积室中,这实际上能够以纳米级可控方式在器件上生长出元件。”
该小组目前使用的为三大主要区域选择性沉积方法之一,名为“原子层沉积”。该方法的重点,在于利用“自聚合单分子层”(简称SAM)。
这种方法可能有助于为新的硬件形式铺平道路,特别是三维结构等能够更好支持人工智能应用程序的硬件形式。
Wojtecki解释称,“一旦我们开发出这一过程的扩展性方法,我们即可在构建下一代硬件时开始采用——包括将其应用于新型人工智能硬件,或者7纳米技术节点或者更小技术节点的器件制造流程。”
IBM公司并不是唯一一家着力开发区域选择性原子层沉积技术的企业,不过Wojtecki认为他将能够为具有苛刻要求的应用定制化学结构,从而使得这种“新聚合、材料与表征方法”的开发最终具备可扩展能力。
好文章,需要你的鼓励
CIO们正面临众多复杂挑战,其多样性值得关注。除了企业安全和成本控制等传统问题,人工智能快速发展和地缘政治环境正在颠覆常规业务模式。主要挑战包括:AI技术快速演进、IT部门AI应用、AI网络攻击威胁、AIOps智能运维、快速实现价值、地缘政治影响、成本控制、人才短缺、安全风险管理以及未来准备等十个方面。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
过去两年间,许多组织启动了大量AI概念验证项目,但失败率高且投资回报率令人失望。如今出现新趋势,组织开始重新评估AI实验的撒网策略。IT观察者发现,许多组织正在减少AI概念验证项目数量,IT领导转向商业AI工具,专注于有限的战略性目标用例。专家表示,组织正从大规模实验转向更专注、结果导向的AI部署,优先考虑能深度融入运营工作流程并产生可衡量结果的少数用例。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。