IBM、DCC(David Clark Cause)、联合国人权委员会、美国红十字会、Linux基金会、恩颐投资(NEA)和其他支持者向运用开源技术帮助拯救生命的开发人员表示祝贺。
2018年10月29日,“代码行动”联合发起人IBM(纽交所代码:IBM)和DCC(David Clark Cause)携手联合国人权组织和美国红十字会在旧金山举行的全球颁奖典礼上揭晓了首届“代码行动”全球挑战赛的获奖名单。
计划在5年内累计投入3000万美元的“代码行动全球倡议”得到了Linux基金会、VC合作伙伴恩颐投资公司(NEA)以及其他80多家企业、人道主义和学术机构的支持。它呼吁开发人员和数据科学家为当今世界面临的一些最具挑战性的问题创建灵活的技术解决方案。2018年大赛主题为“如何更好地规划并应对自然灾害“。
OWL项目(全称为Organization, Whereabouts, and Logistics,意为“组织、行踪和物流”)最终问鼎20万美元大奖,它是一个由硬件、软件两部分组成的解决方案。它的离线通信基础架构可为急救人员提供一个简单的界面,协助他们从各个方面对灾难进行管理。物理“集群”(Clusterduck)网络由多个集线器构成,这些集线器共同创建了一个网格网络,它可以基于会话系统向中央应用程序发送语音信息。
OWL软件事件管理系统使用预测分析和多个数据源为急救人员创建仪表板。团队成员Magus Pereira表示:“一旦集群网络(network of ducks)完成部署和集群化,公众就能通过非常直观的交互界面访问设备,联系急救人员并提出系列的需求 。”
该解决方案采用了IBM云平台上最新的IBM Watson Studio、Watson AI服务和气象公司API接口。
“IBM认为,好奇的人是独具匠心的,他们能够利用前沿技术推进人道主义发展。此外,从推动Linux和Java的合作到促成Kubernetes和Hyperledger的协作,IBM深知公开合作的重要性,它让各方从最佳创意中受益”,IBM首席数字官Bob Lord表示。”如今,随着开发人员使用AI、云、区块链和物联网等复杂工具安全地大规模处理数据,IBM开源代码的强大功能正在得以释放,并以比以往更快、更广泛、更有意义的方式产生着影响。”
除现金奖外,OWL项目将由IBM企业全球志愿服务队(IBM Corporate Service Corps)来推进落实。来自纽约和北卡罗来纳州的团队成员将有机会向风险投资公司恩颐投资(NEA)介绍并推广OWL项目以寻求潜在的资金支持。
来自尼泊尔加德满都和哥伦比亚波哥大的团队开发了灾后快速反应重建(PD3R)解决方案并获得了亚军。根据对2015年尼泊尔地震灾害的观察,该项目可为自然灾害后流离失所的家庭提供即时的工程建议。他们的解决方案是基于3D模型图像教学的人工智能技术。
来自旧金山湾区的Lali山火探测项目团队荣获了第三名,他们发明了使用传感器网络实时预测山火蔓延趋势的解决方案,其灵感来源于生长在厄瓜多尔火灾多发区域的队员的亲身体验。
PD3R和Lali项目分别获得了25000美元奖金。三个获奖的解决方案均将获得Linux基金会的长期开源支持。
中国农业银行团队的United Aid Net (UAN)解决方案获得了第五名的好成绩,方案通过一个全球紧急援助网络,基于面部识别取款和区块链技术,允许家庭成员或好友在灾难发生期间临时共享金融服务。此方案不仅缩短了灾民通过财务申请的时间,减少银行运营成本,更可以在灾难发生期间维护社会稳定,体现国际人道主义的意义和精神。
此次,共有总计来自156个国家的超过10万名开发人员和数据科学家参加了“代码行动”挑战赛,创造了2500多个应用。
挑战赛的评委包括美国前总统比尔·克林顿、Linux基金会执行董事Jim Zemlin、联合国人权事务副高级专员Kate Gilmore、哥伦比亚大学地球研究所国家灾害防备中心主任Irwin Redlener博士、RED首席执行官Deborah Dugan以及Twitter负责设计和研究的主管Grace Kim。
好文章,需要你的鼓励
这项由加州大学圣地亚哥分校和微软研究院合作开发的REAL框架,通过程序分析反馈训练大型语言模型生成高质量代码。与传统方法不同,REAL采用强化学习将代码安全性和可维护性作为奖励信号,不依赖人工标注或特定规则。研究在多个数据集上的实验表明,REAL在保证功能正确性的同时显著提高了代码质量,有效解决了"即兴编程"中的安全漏洞和维护性问题,为AI辅助编程提供了新的范式。
加州大学伯克利分校与Meta FAIR研究团队开发了"Self-Challenging"框架,让大语言模型通过自己创建和解决任务来提升能力。该方法引入创新的"Code-as-Task"格式,包含指令、验证函数、示例解决方案和失败案例,确保生成的任务既可行又有挑战性。在工具计算、网页浏览、零售服务和航班预订四种环境测试中,仅使用自生成训练数据,Llama-3.1-8B模型性能提升了两倍多,证明AI可以通过自我挑战实现有效学习,减少对人类标注的依赖。
南洋理工大学与SenseTime Research合作提出了PoseFuse3D-KI,一种创新的人体中心关键帧插值框架。该方法将3D人体模型信息融入扩散过程,解决了现有技术在处理复杂人体动作时产生扭曲结果的问题。研究团队开发了专门的SMPL-X编码器直接从3D空间提取几何信息,并设计了融合网络将3D线索与2D姿态无缝整合。他们还构建了CHKI-Video数据集,包含2,614个视频片段及完整的人体标注。实验结果显示,PoseFuse3D-KI在PSNR上提升9%,LPIPS减少38%,显著超越现有方法。
这项研究提出了LongGuide算法,解决了大型语言模型在长文本生成任务中的局限性。研究团队发现,仅依靠上下文学习无法使模型充分掌握文本的语言和格式特性。LongGuide通过自动生成两种指导原则:度量指导原则和输出约束指导原则,显著提升了模型性能。在七种长文本生成任务中,该方法使开源和闭源模型的ROUGE-L评分平均提高约6%。LongGuide具有通用性强、易于学习、成本效益高等优点,为提升AI长文本生成能力提供了新方向。