IBM、DCC(David Clark Cause)、联合国人权委员会、美国红十字会、Linux基金会、恩颐投资(NEA)和其他支持者向运用开源技术帮助拯救生命的开发人员表示祝贺。
2018年10月29日,“代码行动”联合发起人IBM(纽交所代码:IBM)和DCC(David Clark Cause)携手联合国人权组织和美国红十字会在旧金山举行的全球颁奖典礼上揭晓了首届“代码行动”全球挑战赛的获奖名单。
计划在5年内累计投入3000万美元的“代码行动全球倡议”得到了Linux基金会、VC合作伙伴恩颐投资公司(NEA)以及其他80多家企业、人道主义和学术机构的支持。它呼吁开发人员和数据科学家为当今世界面临的一些最具挑战性的问题创建灵活的技术解决方案。2018年大赛主题为“如何更好地规划并应对自然灾害“。
OWL项目(全称为Organization, Whereabouts, and Logistics,意为“组织、行踪和物流”)最终问鼎20万美元大奖,它是一个由硬件、软件两部分组成的解决方案。它的离线通信基础架构可为急救人员提供一个简单的界面,协助他们从各个方面对灾难进行管理。物理“集群”(Clusterduck)网络由多个集线器构成,这些集线器共同创建了一个网格网络,它可以基于会话系统向中央应用程序发送语音信息。
OWL软件事件管理系统使用预测分析和多个数据源为急救人员创建仪表板。团队成员Magus Pereira表示:“一旦集群网络(network of ducks)完成部署和集群化,公众就能通过非常直观的交互界面访问设备,联系急救人员并提出系列的需求 。”
该解决方案采用了IBM云平台上最新的IBM Watson Studio、Watson AI服务和气象公司API接口。
“IBM认为,好奇的人是独具匠心的,他们能够利用前沿技术推进人道主义发展。此外,从推动Linux和Java的合作到促成Kubernetes和Hyperledger的协作,IBM深知公开合作的重要性,它让各方从最佳创意中受益”,IBM首席数字官Bob Lord表示。”如今,随着开发人员使用AI、云、区块链和物联网等复杂工具安全地大规模处理数据,IBM开源代码的强大功能正在得以释放,并以比以往更快、更广泛、更有意义的方式产生着影响。”
除现金奖外,OWL项目将由IBM企业全球志愿服务队(IBM Corporate Service Corps)来推进落实。来自纽约和北卡罗来纳州的团队成员将有机会向风险投资公司恩颐投资(NEA)介绍并推广OWL项目以寻求潜在的资金支持。
来自尼泊尔加德满都和哥伦比亚波哥大的团队开发了灾后快速反应重建(PD3R)解决方案并获得了亚军。根据对2015年尼泊尔地震灾害的观察,该项目可为自然灾害后流离失所的家庭提供即时的工程建议。他们的解决方案是基于3D模型图像教学的人工智能技术。
来自旧金山湾区的Lali山火探测项目团队荣获了第三名,他们发明了使用传感器网络实时预测山火蔓延趋势的解决方案,其灵感来源于生长在厄瓜多尔火灾多发区域的队员的亲身体验。
PD3R和Lali项目分别获得了25000美元奖金。三个获奖的解决方案均将获得Linux基金会的长期开源支持。
中国农业银行团队的United Aid Net (UAN)解决方案获得了第五名的好成绩,方案通过一个全球紧急援助网络,基于面部识别取款和区块链技术,允许家庭成员或好友在灾难发生期间临时共享金融服务。此方案不仅缩短了灾民通过财务申请的时间,减少银行运营成本,更可以在灾难发生期间维护社会稳定,体现国际人道主义的意义和精神。
此次,共有总计来自156个国家的超过10万名开发人员和数据科学家参加了“代码行动”挑战赛,创造了2500多个应用。
挑战赛的评委包括美国前总统比尔·克林顿、Linux基金会执行董事Jim Zemlin、联合国人权事务副高级专员Kate Gilmore、哥伦比亚大学地球研究所国家灾害防备中心主任Irwin Redlener博士、RED首席执行官Deborah Dugan以及Twitter负责设计和研究的主管Grace Kim。
好文章,需要你的鼓励
随着AI模型规模不断扩大,GPU内存容量已成为瓶颈。Phison和Sandisk分别提出了软硬件解决方案:Phison的aiDAPTIV+软件通过创建跨GPU内存、CPU内存和SSD的虚拟内存池,支持高达700亿参数的模型;而Sandisk的高带宽闪存(HBF)则采用类似HBM的硬件架构,通过TSV连接器将NAND闪存与GPU紧密集成。Phison方案适合中小企业和边缘系统,Sandisk方案则针对大型GPU服务器,两种技术可共存互补。
上海AI实验库推出YUME系统,用户只需输入一张图片就能创建可键盘控制的虚拟世界。该系统采用创新的运动量化技术,将复杂的三维控制简化为WASD键操作,并通过智能记忆机制实现无限长度的世界探索。系统具备强大的跨风格适应能力,不仅能处理真实场景,还能重现动漫、游戏等各种艺术风格的虚拟世界,为虚拟现实和交互娱乐领域提供了全新的技术路径。
法国AI初创公司Mistral AI发布了首个大语言模型全面生命周期评估,量化了AI的环境代价。其Mistral Large 2模型训练产生20,400吨二氧化碳当量,消耗281,000立方米水。运营阶段占环境影响85%,远超硬件制造成本。研究表明地理位置和模型大小显著影响碳足迹,企业可通过选择适当规模模型、批处理技术和清洁能源部署来减少环境影响。这一透明度为企业AI采购决策提供了新的评估标准。
上海AI实验室研究团队开发了革命性的AI编程验证方法,让大语言模型能够在最小人工干预下自动生成和验证程序规范。该方法摒弃传统的人工标注训练,采用强化学习让模型在形式化语言空间中自主探索,在Dafny编程验证任务上显著超越现有方法,为AI自主学习开辟新道路。