Nvidia已将9款新的支持GPU的超级计算容器添加到它的云服务中了。
Nvidia扩充了Nvidia GPU Cloud(NGC),现在包括35个容器,这一数量在去年发布时基础上翻了三番。
他们瞄准的是负责运行巨大的工作负载、使用机器学习处理数学运算以训练模型或运行模拟的核心工程师。开发人员可以在他们选择的框架中编写程序,然后将模型部署到共享集群上,这样他们的模型就可以运行得更快。
NCG还配备了适用于各种应用的不同软件包。“NGC上提供用于PGI编译器的容器将帮助开发人员构建面向多核CPU和Nvidia Tesla GPU的HPC应用。PGI编译器和工具支持使用OpenACC、OpenMP和CUDA Fortran并行编程来开发性能可移植的HPC应用,”Nvidia在一篇博客文章中这样解释道。
有些像CHROMA一样是用于优化数学和物理模型的,AMBER用于分子模拟,CANDLE用于癌症研究。显然有超过27000个用户注册到NGC的容器注册表。
“自11月的超级计算大会以来,NGC已经增加了9个新的HPC和可视化容器,包括CHROMA、CANDLE、PGI和VMD。除此之外,还有8个容器,包括NAMD、GROMACS以及去年超算大会上推出的ParaView。”
容器让开发人员不需要安装所有必需的不同库和后端程序来部署他们的模型。对于测试模型也很不错,因为研究人员可以在不同的系统上运行各种实验,并检查他们的模拟结果是否相同。
他们还使用不同的以GPU为驱动的工作站进行测试,例如Nvidia的DGX,以及其他云平台如AWS、Google Cloud和Oracle Cloud Infrastructure。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。