Nvidia已将9款新的支持GPU的超级计算容器添加到它的云服务中了。
Nvidia扩充了Nvidia GPU Cloud(NGC),现在包括35个容器,这一数量在去年发布时基础上翻了三番。
他们瞄准的是负责运行巨大的工作负载、使用机器学习处理数学运算以训练模型或运行模拟的核心工程师。开发人员可以在他们选择的框架中编写程序,然后将模型部署到共享集群上,这样他们的模型就可以运行得更快。
NCG还配备了适用于各种应用的不同软件包。“NGC上提供用于PGI编译器的容器将帮助开发人员构建面向多核CPU和Nvidia Tesla GPU的HPC应用。PGI编译器和工具支持使用OpenACC、OpenMP和CUDA Fortran并行编程来开发性能可移植的HPC应用,”Nvidia在一篇博客文章中这样解释道。
有些像CHROMA一样是用于优化数学和物理模型的,AMBER用于分子模拟,CANDLE用于癌症研究。显然有超过27000个用户注册到NGC的容器注册表。
“自11月的超级计算大会以来,NGC已经增加了9个新的HPC和可视化容器,包括CHROMA、CANDLE、PGI和VMD。除此之外,还有8个容器,包括NAMD、GROMACS以及去年超算大会上推出的ParaView。”
容器让开发人员不需要安装所有必需的不同库和后端程序来部署他们的模型。对于测试模型也很不错,因为研究人员可以在不同的系统上运行各种实验,并检查他们的模拟结果是否相同。
他们还使用不同的以GPU为驱动的工作站进行测试,例如Nvidia的DGX,以及其他云平台如AWS、Google Cloud和Oracle Cloud Infrastructure。
好文章,需要你的鼓励
OpenAI推出ChatGPT Images新版本GPT Image 1.5,承诺更好的指令遵循、更精确的编辑功能和高达4倍的图像生成速度。该模型面向所有ChatGPT用户和API开放。这是OpenAI在CEO奥特曼宣布"红色警报"后与谷歌Gemini竞争的最新升级。新模型提供后期制作功能,支持更精细的编辑控制,能在编辑过程中保持面部相似度、光照、构图和色调的视觉一致性,解决了传统AI图像工具迭代编辑时缺乏一致性的问题。
艾伦人工智能研究所开发的olmOCR 2通过创新的单元测试训练方法,将文档识别准确率提升至82.4%,在处理复杂数学公式、表格和多栏布局方面表现卓越。该系统采用强化学习和合成数据生成技术,实现了完全开源,为全球研究者提供了先进的OCR解决方案,推动了AI技术民主化发展。
Zoom推出AI Companion 3.0,采用联邦AI架构结合自研模型与OpenAI、Anthropic等第三方大语言模型。新版本具备智能工作流、对话式工作界面等功能,可将会议对话转化为洞察、进度跟踪和文档内容。系统支持加密传输,不使用客户内容训练模型。用户可通过ai.zoom.us访问,或以每月10美元独立购买。
苹果公司发布了包含40万张图片修改案例的AI训练数据集Pico-Banana-400K,涵盖35种修图操作类型。该数据集采用严格质量控制,包含成功失败案例对比和多轮修图场景。研究显示AI在全局修改方面表现优秀,但精细操作仍有挑战。这为AI修图技术发展奠定基础,未来将让修图软件更智能易用。