Nvidia已将9款新的支持GPU的超级计算容器添加到它的云服务中了。
Nvidia扩充了Nvidia GPU Cloud(NGC),现在包括35个容器,这一数量在去年发布时基础上翻了三番。
他们瞄准的是负责运行巨大的工作负载、使用机器学习处理数学运算以训练模型或运行模拟的核心工程师。开发人员可以在他们选择的框架中编写程序,然后将模型部署到共享集群上,这样他们的模型就可以运行得更快。
NCG还配备了适用于各种应用的不同软件包。“NGC上提供用于PGI编译器的容器将帮助开发人员构建面向多核CPU和Nvidia Tesla GPU的HPC应用。PGI编译器和工具支持使用OpenACC、OpenMP和CUDA Fortran并行编程来开发性能可移植的HPC应用,”Nvidia在一篇博客文章中这样解释道。
有些像CHROMA一样是用于优化数学和物理模型的,AMBER用于分子模拟,CANDLE用于癌症研究。显然有超过27000个用户注册到NGC的容器注册表。
“自11月的超级计算大会以来,NGC已经增加了9个新的HPC和可视化容器,包括CHROMA、CANDLE、PGI和VMD。除此之外,还有8个容器,包括NAMD、GROMACS以及去年超算大会上推出的ParaView。”
容器让开发人员不需要安装所有必需的不同库和后端程序来部署他们的模型。对于测试模型也很不错,因为研究人员可以在不同的系统上运行各种实验,并检查他们的模拟结果是否相同。
他们还使用不同的以GPU为驱动的工作站进行测试,例如Nvidia的DGX,以及其他云平台如AWS、Google Cloud和Oracle Cloud Infrastructure。
好文章,需要你的鼓励
OpenAI 本周为 ChatGPT 添加了 AI 图像生成功能,用户可直接在对话中创建图像。由于使用量激增,CEO Sam Altman 表示公司的 GPU "正在融化",不得不临时限制使用频率。新功能支持工作相关图像创建,如信息图表等,但在图像编辑精确度等方面仍存在限制。值得注意的是,大量用户正在使用该功能创作吉卜力动画风格的图像。
Synopsys 近期推出了一系列基于 AMD 最新芯片的硬件辅助验证和虚拟原型设计工具,包括 HAPS-200 原型系统和 ZeBu-200 仿真系统,以及面向 Arm 硬件的 Virtualizer 原生执行套件。这些创新工具显著提升了芯片设计和软件开发的效率,有助于加快产品上市速度,满足当前 AI 时代下快速迭代的需求。
人工智能正在深刻改变企业客户关系管理 (CRM) 的方方面面。从销售自动化、营销内容生成到客服智能化,AI不仅提升了运营效率,还带来了全新的服务模式。特别是自主代理AI (Agentic AI) 的出现,有望在多渠道无缝接管客户服务职能,开创CRM发展新纪元。
数据孤岛长期困扰着组织,影响着人工智能的可靠性。它们导致信息分散、模型训练不完整、洞察力不一致。解决方案包括实施强大的数据治理、促进跨部门协作、采用现代数据集成技术等。克服数据孤岛对于充分发挥AI潜力至关重要。