IBM正在寻求让自己的大型机更适合于现代数据中心。
IBM近日公布了两款小型化的大型机型号,并表示这两款型号在公有云或私有云环境中部署要比上一代传统大型系统更容易。
第一个新系统是以z14 Model ZR1(如图)命名的,基于一种单框架设计,IBM说这种设计可以装入以前用于容纳常规服务器相同的标准19英寸数据中心机架。
ZR1在IBM早期Z13大型机基础上进行了多项重大改进,吞吐量提高10%,配置高达8TB的内存,是上一代的2倍。计算则由3个10核心处理器执行,据称可以达到5.2GHz的主频。
IBM表示,这些芯片提供足够的计算能力来运行多达330,000个容器。依赖大型机的大企业正在越来越多地使用软件容器,这让开发人员将应用组件跨不同类型基础架构捆绑到轻量级的软件包中。
企业也可以利用ZR1每天处理高达8.5亿次加密交易。大型机在金融领域的应用尤其广泛,IBM表示全球50强银行中有44家银行依赖IBM的Z系列系统。
IBM表示,ZR1支持标准冷却和动力设备,这一特点旨在让ZR1相比Z14更易于部署,后者需要复杂的三相电源供电。此外,ZR1机箱拥有16个机架的可用空间,可容纳网络设备和辅助设备,从而释放数据中心的占地空间。
IBM推出的另一款大型机新型号是基于Linux的Rockhopper II,该系统专为运行Linux开源操作系统而设计,可以像ZR1一样安装在19英寸机架中,并提供类似的规格。该型号是IBM在2015年与Ubuntu合作推出的大型机的最新版本。
好文章,需要你的鼓励
Panzura在其Symphony数据管理平台中新增了访问控制列表分析和自动修复功能。该平台专门处理EB级非结构化数据集,具备扫描、分层、迁移和合规分析等功能。Panzura声称58%的企业受到权限扩散问题影响,74%的数据泄露涉及特权凭证滥用。新版本重点解决权限继承中断、过度授权访问和合规盲点等问题,提供完整的文件系统权限可视性和快速问题解决能力。
沙特TachyHealth团队开发的32亿参数医疗AI模型Gazal-R1,通过创新的双阶段训练方法在医疗推理任务上超越了12倍大的模型,在MedQA等测试中取得87.1%的优异成绩,展现了精巧训练策略胜过规模扩张的重要启示,为资源有限的医疗AI研究提供了新路径。
Arista Networks宣布收购博通旗下VeloCloud SD-WAN业务,交易金额约10亿美元。VeloCloud是SD-WAN领域先驱企业,拥有集成安全功能的云管理SD-WAN解决方案。此次收购填补了Arista在分支机构连接方面的空白,使其能够提供端到端网络解决方案。同时,前思科高管Todd Nightingale加入担任总裁兼首席运营官,将助力公司拓展更广泛的客户群体。
奥地利维也纳医科大学研究团队开发了RetFiner技术,通过让眼科AI模型同时学习OCT图像和医疗文字描述,显著提升了诊断准确率。该方法采用四种训练任务让AI模型建立图像与文字的深层联系,在三个主流眼科AI模型上实现了2-6个百分点的性能提升,为医学AI发展开辟了新方向。