为推动Open Compute Project(OCP)项目,Facebook本周公布了最新名为Big Basin v2的GPU服务器设计。
OCP最早是由一群致力于通过开发共享知识产权来打造高效服务器、存储和数据中心的工程师社区建立起来的。诺基亚、英特尔、思科、联想、苹果和谷歌等公司都是OCP的成员。
Big Basin v2的结构与之前的Big Basin基本相同,但升级采用了Nvidia最新八款Tesla V100图形卡。Tioga Pass CPU单元被用于头节点,同时在CPU与GPU之间数据传输的PCIe带宽也翻了一番。
Facebook在一篇博客文章中表示,在增加了OCP网卡的带宽之后,单GPU性能与之前的Big Basin设计相比增加了66%。
这意味着研究人员和工程师可以构建更大规模的机器学习模型,更有效地进行训练和部署。 Facebook通过监控用户的互动,来预测特定用户将看到什么内容。
Facebook将机器学习用于新闻推送排名、个性化广告、搜索、语言翻译、语音识别、甚至是在上传的图片中为你的朋友推荐正确的标签。
大多数机器学习是通过Facebook的AI软件平台FBLearner运行的。
Facebook机器学习基础设施的数据通道。图片来源:Facebook
它分为不同的组件:Feature Store、Flow和Predictor。
Facebook解释说:“Feature Store根据数据和数据流生成特征并将其提供给FBLearner Flow。Flow则基于生成的特征来构建、训练和评估机器学习模型。”
“然后通过FBLearner Predictor把最终的训练模型部署到生产环境中。Predictor会对实时流量进行推断或预测。例如,它可以预测某人最关心的故事、帖子或照片。”
我们很感兴趣看看用于支持大型企业人工智能和机器学习的硬件蓝图是怎样的。这对Facebook来说意义重大,因为它实际上并不真正地参与AI Cloud竞争。谷歌或亚马逊等其他技术巨头可能不会乐于采用它的系统。
“我们相信,开放合作有助于促进未来设计的创新,并使我们能够构建更复杂的人工智能系统,最终支持沉浸式的Facebook体验。”
好文章,需要你的鼓励
AMD CIO的职能角色早已超越典型的CIO职务,他积极支持内部产品开发,一切交付其他部门的方案都要先经过他的体验和评判。
医学生在选择专业时,应当考虑到AI将如何改变医生的岗位形态(以及获得的薪酬待遇)。再结合专业培训所对应的大量时间投入和跨专业的高门槛,这一点就更显得至关重要。
我们拥有大量数据,有很多事情要做,然后出现了一种有趣的技术——生成式AI,给他们所有人带来的影响。这种影响是巨大的,我们在这个领域正在做着惊人的工作。