为推动Open Compute Project(OCP)项目,Facebook本周公布了最新名为Big Basin v2的GPU服务器设计。
OCP最早是由一群致力于通过开发共享知识产权来打造高效服务器、存储和数据中心的工程师社区建立起来的。诺基亚、英特尔、思科、联想、苹果和谷歌等公司都是OCP的成员。
Big Basin v2的结构与之前的Big Basin基本相同,但升级采用了Nvidia最新八款Tesla V100图形卡。Tioga Pass CPU单元被用于头节点,同时在CPU与GPU之间数据传输的PCIe带宽也翻了一番。
Facebook在一篇博客文章中表示,在增加了OCP网卡的带宽之后,单GPU性能与之前的Big Basin设计相比增加了66%。
这意味着研究人员和工程师可以构建更大规模的机器学习模型,更有效地进行训练和部署。 Facebook通过监控用户的互动,来预测特定用户将看到什么内容。
Facebook将机器学习用于新闻推送排名、个性化广告、搜索、语言翻译、语音识别、甚至是在上传的图片中为你的朋友推荐正确的标签。
大多数机器学习是通过Facebook的AI软件平台FBLearner运行的。
Facebook机器学习基础设施的数据通道。图片来源:Facebook
它分为不同的组件:Feature Store、Flow和Predictor。
Facebook解释说:“Feature Store根据数据和数据流生成特征并将其提供给FBLearner Flow。Flow则基于生成的特征来构建、训练和评估机器学习模型。”
“然后通过FBLearner Predictor把最终的训练模型部署到生产环境中。Predictor会对实时流量进行推断或预测。例如,它可以预测某人最关心的故事、帖子或照片。”
我们很感兴趣看看用于支持大型企业人工智能和机器学习的硬件蓝图是怎样的。这对Facebook来说意义重大,因为它实际上并不真正地参与AI Cloud竞争。谷歌或亚马逊等其他技术巨头可能不会乐于采用它的系统。
“我们相信,开放合作有助于促进未来设计的创新,并使我们能够构建更复杂的人工智能系统,最终支持沉浸式的Facebook体验。”
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。
主动型 AI 是人工智能的下一次进化,它不仅能生成内容,还能自主决策和追求目标。这种 AI 可以设定自己的目标,制定策略并根据情况调整方法,实现真正的自主性。它将彻底改变机器与世界的互动方式,为人机协作开启新的可能性,但也带来了透明度和伦理等挑战。