为推动Open Compute Project(OCP)项目,Facebook本周公布了最新名为Big Basin v2的GPU服务器设计。
OCP最早是由一群致力于通过开发共享知识产权来打造高效服务器、存储和数据中心的工程师社区建立起来的。诺基亚、英特尔、思科、联想、苹果和谷歌等公司都是OCP的成员。
Big Basin v2的结构与之前的Big Basin基本相同,但升级采用了Nvidia最新八款Tesla V100图形卡。Tioga Pass CPU单元被用于头节点,同时在CPU与GPU之间数据传输的PCIe带宽也翻了一番。
Facebook在一篇博客文章中表示,在增加了OCP网卡的带宽之后,单GPU性能与之前的Big Basin设计相比增加了66%。
这意味着研究人员和工程师可以构建更大规模的机器学习模型,更有效地进行训练和部署。 Facebook通过监控用户的互动,来预测特定用户将看到什么内容。
Facebook将机器学习用于新闻推送排名、个性化广告、搜索、语言翻译、语音识别、甚至是在上传的图片中为你的朋友推荐正确的标签。
大多数机器学习是通过Facebook的AI软件平台FBLearner运行的。
Facebook机器学习基础设施的数据通道。图片来源:Facebook
它分为不同的组件:Feature Store、Flow和Predictor。
Facebook解释说:“Feature Store根据数据和数据流生成特征并将其提供给FBLearner Flow。Flow则基于生成的特征来构建、训练和评估机器学习模型。”
“然后通过FBLearner Predictor把最终的训练模型部署到生产环境中。Predictor会对实时流量进行推断或预测。例如,它可以预测某人最关心的故事、帖子或照片。”
我们很感兴趣看看用于支持大型企业人工智能和机器学习的硬件蓝图是怎样的。这对Facebook来说意义重大,因为它实际上并不真正地参与AI Cloud竞争。谷歌或亚马逊等其他技术巨头可能不会乐于采用它的系统。
“我们相信,开放合作有助于促进未来设计的创新,并使我们能够构建更复杂的人工智能系统,最终支持沉浸式的Facebook体验。”
好文章,需要你的鼓励
数据分析平台公司Databricks完成10亿美元K轮融资,公司估值超过1000亿美元,累计融资总额超过200亿美元。公司第二季度收入运营率达到40亿美元,同比增长50%,AI产品收入运营率超过10亿美元。超过650家客户年消费超过100万美元,净收入留存率超过140%。资金将用于扩展Agent Bricks和Lakebase业务及全球扩张。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。
医疗信息管理平台Predoc宣布获得3000万美元新融资,用于扩大运营规模并在肿瘤科、研究网络和虚拟医疗提供商中推广应用。该公司成立于2022年,利用人工智能技术提供端到端平台服务,自动化病历检索并整合为可操作的临床洞察。平台可实现病历检索速度提升75%,临床审查时间减少70%,旨在增强而非替代临床判断。
上海AI实验室发布OmniAlign-V研究,首次系统性解决多模态大语言模型人性化对话问题。该研究创建了包含20万高质量样本的训练数据集和MM-AlignBench评测基准,通过创新的数据生成和质量管控方法,让AI在保持技术能力的同时显著提升人性化交互水平,为AI价值观对齐提供了可行技术路径。