半导体公司Xilinx日前揭开旗下数据中心软件可编程芯片设计的面纱,Xilinx称该数据中心软件可编程芯片设计是全新计算类别的一部分。
该数据中心软件可编程芯片设计的大名为自适应计算加速平台(ACAP),Xilinx表示ACAP将令数据中心服务器高度可编程成为现实,而且数据中心性能呈指数级增长。ACAP背后的技术对于普通人来说是高大上的技术,不过Xilinx将用到的概念与现有芯片设计做了对照。
根据Xilinx的说法,ACAP与现场可编程门阵列(FPGA)结构(一种可在制造后进一步配置的集成电路)以及SoC和GPU不同,因为“设计人员不再需要利用可编程逻辑建立连接性基础设施,ACAP可以使用高级语言进行编程,因此提供了灵活性和易用性,同时又提供了比CPU好一个数量级甚至更多的性能优势和功率效率。ACAP实现了以软件为中心的、本质完全不同设计流程,因为所有连接的基础架构都是通过原生软件编程实现的。“
Xilinx首席执行官Victor Peng解释说,Xilinx过去的产品都具有一定程度的适应性和可编程性,但ACAP在这方面做了更多,因为它既可以进行软件编程,也可以进行硬件编程。设计人员因此可以在同一芯片上进行任意多次范围广泛的应用程序编程。
在策略方面,Xilinx新平台的目标是数据中心客户,但Xilinx认为ACAP技术也适用于新兴市场,包括5G、汽车、航空和国防以及有线通信。Xilinx在瞄着未来计算需求,诸如物联网、机器学习和人工智能一类的计算市场。
Xilinx此举事关重大。英特尔的Altera部是竞争对手,两家都在开发可编程处理器和边缘计算、物联网和5G应用。
Peng表示,“我们的策略是在一个适应性和智能世界中推动业务发展。对于我们作为一家企业而言,数据中心在软件开发方面有很多创新,我们希望支持软件方面的创新者。从长期来看,目标放在开发者上会增加我们产品的使用。”
Xilinx表示,首款代号为Everest的ACAP产品系列将采用TSMC 的7nm工艺技术开发,并将在今年晚些时候推出。
好文章,需要你的鼓励
这项来自苹果公司的研究揭示了视频大语言模型评测的两大关键问题:许多测试问题不看视频就能回答正确,且打乱视频帧顺序后模型表现几乎不变。研究提出VBenchComp框架,将视频问题分为四类:语言模型可回答型、语义型、时序型和其他类型,发现在主流评测中高达70%的问题实际上未测试真正的视频理解能力。通过重新评估现有模型,研究团队证明单一总分可能掩盖关键能力差距,并提出了更高效的评测方法,为未来视频AI评测提供了新方向。
这篇来自KAIST AI研究团队的论文提出了"差分信息分布"(DID)这一创新概念,为理解直接偏好优化(DPO)提供全新视角。研究证明,当偏好数据编码了从参考策略到目标策略所需的差分信息时,DPO中的对数比率奖励形式是唯一最优的。通过分析DID熵,研究解释了对数似然位移现象,并发现高熵DID有利于通用指令跟随,而低熵DID适合知识密集型问答。这一框架统一了对DPO目标、偏好数据结构和策略行为的理解,为语言模型对齐提供理论支持。
VidText是一个全新的视频文本理解基准,解决了现有评估体系的关键缺口。它涵盖多种现实场景和多语言内容,提出三层评估框架(视频级、片段级、实例级),并配对感知与推理任务。对18个先进多模态模型的测试显示,即使最佳表现的Gemini 1.5 Pro也仅达46.8%平均分,远低于人类水平。研究揭示输入分辨率、OCR能力等内在因素和辅助信息、思维链推理等外部因素对性能有显著影响,为未来视频文本理解研究提供了方向。
ZeroGUI是一项突破性研究,实现了零人工成本下的GUI代理自动化在线学习。由上海人工智能实验室和清华大学等机构联合开发,这一框架利用视觉-语言模型自动生成训练任务并提供奖励反馈,使AI助手能够自主学习操作各种图形界面。通过两阶段强化学习策略,ZeroGUI显著提升了代理性能,在OSWorld环境中使UI-TARS和Aguvis模型分别获得14%和63%的相对改进。该研究彻底消除了传统方法对昂贵人工标注的依赖,为GUI代理技术的大规模应用铺平了道路。