半导体公司Xilinx日前揭开旗下数据中心软件可编程芯片设计的面纱,Xilinx称该数据中心软件可编程芯片设计是全新计算类别的一部分。
该数据中心软件可编程芯片设计的大名为自适应计算加速平台(ACAP),Xilinx表示ACAP将令数据中心服务器高度可编程成为现实,而且数据中心性能呈指数级增长。ACAP背后的技术对于普通人来说是高大上的技术,不过Xilinx将用到的概念与现有芯片设计做了对照。
根据Xilinx的说法,ACAP与现场可编程门阵列(FPGA)结构(一种可在制造后进一步配置的集成电路)以及SoC和GPU不同,因为“设计人员不再需要利用可编程逻辑建立连接性基础设施,ACAP可以使用高级语言进行编程,因此提供了灵活性和易用性,同时又提供了比CPU好一个数量级甚至更多的性能优势和功率效率。ACAP实现了以软件为中心的、本质完全不同设计流程,因为所有连接的基础架构都是通过原生软件编程实现的。“
Xilinx首席执行官Victor Peng解释说,Xilinx过去的产品都具有一定程度的适应性和可编程性,但ACAP在这方面做了更多,因为它既可以进行软件编程,也可以进行硬件编程。设计人员因此可以在同一芯片上进行任意多次范围广泛的应用程序编程。
在策略方面,Xilinx新平台的目标是数据中心客户,但Xilinx认为ACAP技术也适用于新兴市场,包括5G、汽车、航空和国防以及有线通信。Xilinx在瞄着未来计算需求,诸如物联网、机器学习和人工智能一类的计算市场。
Xilinx此举事关重大。英特尔的Altera部是竞争对手,两家都在开发可编程处理器和边缘计算、物联网和5G应用。
Peng表示,“我们的策略是在一个适应性和智能世界中推动业务发展。对于我们作为一家企业而言,数据中心在软件开发方面有很多创新,我们希望支持软件方面的创新者。从长期来看,目标放在开发者上会增加我们产品的使用。”
Xilinx表示,首款代号为Everest的ACAP产品系列将采用TSMC 的7nm工艺技术开发,并将在今年晚些时候推出。
好文章,需要你的鼓励
从浙江安吉的桌椅,到广东佛山的沙发床垫、河南洛阳的钢制家具,再到福建福州的竹藤制品,中国各大高度专业化的家具产业带,都在不约而同地探索各自的数字化出海路径。
哥伦比亚大学研究团队开发了MathBode动态诊断工具,通过让数学题参数按正弦波变化来测试AI的动态推理能力。研究发现传统静态测试掩盖了AI的重要缺陷:几乎所有模型都表现出低通滤波特征和相位滞后现象,即在处理快速变化时会出现失真和延迟。该方法覆盖五个数学家族的测试,为AI模型选择和部署提供了新的评估维度。
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
这项研究首次发现AI推理模型存在"雪球效应"问题——推理过程中的小错误会逐步放大,导致AI要么给出危险回答,要么过度拒绝正常请求。研究团队提出AdvChain方法,通过训练AI学习"错误-纠正"过程来获得自我纠错能力。实验显示该方法显著提升了AI的安全性和实用性,用1000个样本达到了传统方法15000个样本的效果,为AI安全训练开辟了新方向。