至顶网服务器频道 11月28日 新闻消息(文/李祥敬):现在各行各业都在进行数字化转型,包括从前端的业务到后端的架构。在这种数字化转型中,企业该如何把握转型策略以及借助新技术进行更快更好地转型成为一大挑战。近日,IBM云计算资深架构师黄英杰作客《科技行者》,畅谈了他眼中的企业数字化转型以及IBM借助云计算平台加速企业转型的应对之道。
在黄英杰看来,企业数字化转型需要具备以下几个要素:支撑业务转型的强壮、灵活的基础架构;如何借助新技术挖掘自有数据价值,充分发挥独享数据优势;保证数据安全且流程合规。IBM认为,云计算平台是达到这样愿景的关键技术手段。“云是企业数字化转型一个重要方面,云的标准化、共享特性、自动化可以与企业的业务进行结合产生新的价值。IBM不光提供云平台服务,还有专门的团队协助客户快速搭建创新的业务场景。”
在基础架构层面,很多企业在发展初期已经建立了自己相对完善的IT系统架构,而在数字化转型中,企业仍会面临诸多挑战。黄英杰表示,企业原有的IT架构在支撑企业核心业务方面仍然发挥了重要的作用。在数字化转型中,我们并不是抛弃原有架构。
“传统IT架构与新架构之间应该是一种协同的关系,这样才能产生更好的价值。因为在数字化转型中,企业需要面对新的应用场景,而这种新的应用场景就需要新的架构与之对应。IBM 云计算平台要做的是既可以帮助企业承载传统工作负载,同时也能轻松地开发和运行创新应用。”黄英杰说。
黄英杰表示,现在公有云可以交付给企业很多能力,我们需要把这些不同的能力组合在一块,产生新的价值。比如企业的很多核心数据产生在内部也必须保留在防火墙内,如何通过混合云架构把这些数据的价值释放出来,这是企业必须要思考的。
针对企业的业务创新需求,IBM 云计算提供了丰富的产品和服务,比如基于微服务的云架构、云部署和云管理应用,开源的DevOps工具及服务,以及集成在IBM公有云的人工智能、区块链、物联网等前沿技术接入。“传统企业可以借助IBM云计算平台实现业务转型,IBM帮助企业认识自己的IT架构和业务场景,并通过公有云的环境创新业务形态。”黄英杰说。
IBM云计算提供了多样化的计算力供给,企业可以在上面运行各种不同的负载能力。同时,在现今这个数据为王的年代,企业面对是的海量的数据,而要实现海量数据的价值实现需要新的工具。IBM云计算提供了这样的数据科学工具箱,比如IBM Big Insights on Cloud、IBM Analytics for Apache Spark等。“企业自身产生的数据是独一无二的,这也是企业形成差异化竞争优势的先决条件。IBM通过云交付各种大数据开源技术,帮助企业应对数据挑战。”黄英杰说。
人工智能技术正在迅猛发展。在过去的60年中,IBM始终在研究、部署和投资人工智能技术,运营着全球最大的行业研究机构,并推出了业界唯一规模化并在实际应用中的商用人工智能云平台Watson,目前提供50多种API允许企业和开发者将认知能力运用到自身数字转型的业务中。
黄英杰表示,借助这些服务,IBM云计算能帮助企业在大量数据里挖掘新的价值。“认知计算是对非结构化数据的一种处理能力,同时让机器感知、理解人,经过推理与人类通过自然语言进行互动。目前IBM的认知系统已经有众多的行业实践,比如在健康医疗领域,Watson健康将认知计算科技、医学生物学前沿科技创新与循证医疗大数据结合起来,能够在医学研究、诊疗辅助、认知关怀和个人健康管理等多个方面提供独特的价值。在金融领域也一样,Watson可以应用在合规监管和投资组合等,这种认知计算能力的引入让未来的想象空间无限扩大。”
在云平台的选择上,虽然公有云呈现爆发态势,但是我们仍然不能忽视私有云的存在。毕竟对于某些行业,处于合规和安全考虑,私有云的方式更符合业务需求。同时,现在企业面临一个混合云的管理环境,某些业务使用公有云,而在企业内部则使用私有云,如何实现这些多云的统一管理也是企业数字化转型中需要面对的。
黄英杰说,在集成方面,IBM 云计算在数据和接口两个方面支撑企业打通不同系统,实现混合云集成的场景。IBM能够根据API、应用、消息、数据等各个方面来构建最新的集成模型,以便企业能够利用技术优势来推动数字变革。此外,IBM混合云集成解决方案还能够帮助企业应对与安全、治理、性能、扩展相关的挑战。
当今时代,数字化转型已经成为企业的必选项。而如何成功实现数字化转型是摆在企业面前的一个重要问题,IBM通过云平台赋能企业数字化转型,同时结合自身在行业数字化转型方面的实践,加速了企业数字化转型的步伐。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。