11月17日,由中国信息通信研究院(信通院)指导,云计算开源产业联盟(OSCAR)主办的“中国混合云标杆案例暨寻找2017中国混合云十大用户”评选结果揭晓。其中,ZStack获奖案例最多,包括东方明珠新媒体股份有限公司的“东方明珠混合云”、拉扎斯网络科技(上海)有限公司的“饿了么混合云”、北京农信互联科技有限公司的“农信互联混合云”。
2017年是混合云业务爆发的一年。据信通院调查统计,2016年我国企业采用混合云比例为11.8%。RightScale调查报告显示,采用混合云的企业较2015年上升了9%。据IDC预测,未来混合云将占据整个云市场份额的67%。种种迹象表明,混合云正被越来越多的企业所采纳,甚至对于大多数企业而言,混合云似乎成为最优的云战略。
信通院作为工业和信息化部直属科研事业单位,致力于为云计算、大数据、互联网行业等行业发展的重大战略、规划、政策、标准和测试认证等提供支撑。尤其是作为云计算行业可信云认证的主管单位,面对混合云市场的爆发,信通院适时启动了此次“中国混合云标杆案例暨寻找2017中国混合云十大用户”活动,有力推进了中国云计算产业的蓬勃发展。
此次活动由OSCAR主办,IT168承办。活动自9月22号启动以来,汇聚了众多用户案例。主办方本着“公平、公正、公开”的原则,以专区形式展示混合云行业重点案例,并以专家评选、行业用户和云计算产业人员共同参与投票的方式,最终评选出了“2017年度混合云10大用户及案例”。“东方明珠”以总票数10981票的成绩位居“2017年度混合云10大用户”榜首。
作为此次获奖案例最多的云服务商,ZStack致力于产品化的创新开源云计算服务,早在2017年初就在业内率先提出“无缝混合云”、“混合云连接一切IT”的创新理念。这一理念不仅贯穿在其参与的全年阿里云栖大会的所有分站活动,而且在8月份重磅召开混合云产品发布会,宣布与阿里云战略融合。值得一提的是,在云栖大会杭州站“寻找混合云生态·闪亮之星”的活动中,业内30多家云计算服务商不约而同地表达了对混合云发展趋势的认同,以及对与ZStack“无缝混合云”合作的信心和愿景。
此次“中国混合云标杆案例暨寻找2017中国混合云十大用户”活动中,ZStack联合业内伙伴共同服务的“东方明珠”、“农信互联”、“饿了么”三大用户案例经过专家审议、大众投票,分别以第一、四、七的傲人成绩荣获“2017年度混合云10大用户”的荣誉,无论获奖数量还是质量,ZStack都当仁不让。
东方明珠、农信互联、饿了么,都是业务发展极快、实力很强的综合型公司,对稳定性、扩展性、维护性等方面的要求极高,在云计算这种新技术方案的选择上他们的要求非常严格。其中:
东方明珠借助ZStack可与任何公有云混合、亲和性好、灵活性大等特性,搭建了3种公有云(亚马逊AWS/微软Azure/腾讯)和自建私有云(ZStack/Vmware)的混合云平台,承载了其直播类服务、媒资处理类服务、关键数据和内容的分发与归档等业务。
农信互联,借助“阿里云+ZStack”的混合云平台,独自探索出一条符合传统农业的“互联网+”之路。通过混合云的灾备,实现了数据的异地容灾和灾难恢复,保证了在自有机房出现意外的情况下,业务的连续性。
饿了么混合云平台,利用ZStack一键部署、全异步无锁架构、无状态服务、开源全API化等特点,快速建立自动化、标准化运维体系。同时根据订餐行业高峰时段明显的特点,采取“阿里云+ZStack”的混合云模式,使得业务在私有云和公有云ECS之间灵活切换,帮助其在高峰期快速部署服务器资源。
好文章,需要你的鼓励
这篇研究介绍了KVzip,一种创新的查询无关KV缓存压缩方法,通过上下文重建机制为大型语言模型提供高效存储解决方案。该技术能将KV缓存大小减少394倍,同时提高解码速度约2倍,在各种任务上性能几乎不受影响。不同于传统查询相关的压缩方法,KVzip创建可在多种查询场景下重用的通用压缩缓存,特别适合个性化AI助手和企业信息检索系统。研究在LLaMA3.1-8B、Qwen2.5-14B和Gemma3-12B等多种模型上进行了验证,处理长度高达17万词元的文本,并能与KV缓存量化等其他优化技术无缝集成。
腾讯与上海交通大学联合推出的DeepTheorem研究突破了大型语言模型在数学定理证明领域的限制。该项目创建了包含12.1万个IMO级别非形式化定理的大规模数据集,开发了专门的RL-Zero强化学习策略,并设计了全面的评估框架。研究表明,通过使用自然语言而非传统形式化系统,即使是7B参数的模型也能在复杂定理证明上取得显著成果,超越许多更大的专业模型。这一成果为AI数学推理开辟了新途径,使语言模型能够像人类数学家一样思考和证明。
MAGREF是字节跳动智能创作团队开发的多主体视频生成框架,能从多张参考图像和文本提示生成高质量视频。该技术引入了区域感知动态遮罩机制,使单一模型灵活处理人物、物体和背景,无需架构变化;并采用像素级通道拼接机制,在通道维度上运作以更好地保留外观特征。实验表明,MAGREF在身份一致性和视觉质量方面优于现有技术,能将单主体训练泛化到复杂多主体场景,为内容创作者提供了强大而便捷的视频生成工具。
这项研究揭示了大型语言模型(LLMs)偏好决策的内在机制。以色列理工学院和IBM研究院的团队开发了一种自动化方法,不需人工预设即可发现和解释影响AI判断的关键概念。研究横跨八个领域(从一般问答到安全评估),分析了12种偏好机制,发现人类评判者重视权威性和清晰度,而AI评判更关注事实准确性。他们提出的层次多领域回归模型不仅能准确预测偏好,还能清晰解释判断过程,为构建更透明、更符合人类价值观的AI系统提供了新途径。