作者:Google云计算引擎产品经理Chris Kleban和Ari Liberman
今天,我们将一次性宣布多条与云GPU相关的消息。首先,Google云端平台(GCP)的性能将随着NVIDIA P100 GPU测试版的公开发布获得进一步提升。第二,Google计算引擎现已普遍采用NVIDIA K80 GPU。第三,我们很高兴地宣布K80和P100 GPU均将推出阶梯使用折扣。
云GPU可以加快工作负载处理速度,包括机器学习训练和推理、地球物理数据处理、模拟、地震分析、分子建模、基因组学及更多高性能计算用例。
NVIDIA Tesla P100是前沿GPU技术。基于Pascal GPU架构,您可以通过减少实例来增加吞吐量,同时节省资金。与K80相比,P100 GPU可以让工作负载实现10倍提速。
与传统解决方案相比,云GPU在灵活性、性能和成本节约三方面做到了优化结合:
在今天的公告发布后,您已可以在全球四个地区部署NVIDIA Tesla P100和K80 GPU。现在,我们的所有GPU都支持阶梯使用折扣:在您使用我们的GPU运行持续的工作负载时,虚拟机的价格会自动降低(折扣最高30%)。享受这些折扣无需绑定服务商也无需预付最低费用保证金。
自推出GPU以来,我们已经看到用户从GPU提供的额外计算性能中获益。得到GPU加速的工作负载包括基因组学、计算金融,以及机器学习模型训练和推理等。我们的客户Shazam是在GCP上采用GPU的首批用户之一,他们采用GPU来为音乐识别服务提供支持。
“对于某些任务而言,用NVIDIA GPU代替传统CPU能获得成本效益和性能的提升。GPU与Shazam核心音乐识别工作负载的相性很好,我们由此将用户录制的音频片段与我们收录了4000多万首歌曲的目录相匹配。我们通过拍摄每首歌曲的音频签名,将其编译成自定义数据库格式并将其加载到GPU内存中。每当用户通过Shazams发现歌曲时,我们的算法就会使用GPU搜索该数据库,直到找到匹配项。每天成功匹配的次数超过2000万次。”—Shazam网站可靠性工程负责人
今天发布的云GPU公告让GCP又迈进了一步,由此成为所有硬件加速工作负载的理想选择。在NVIDIA P100 GPU加入后,我们将重点关注帮助您将新的用例带入生活。
好文章,需要你的鼓励
北京大学团队开发的DragMesh系统通过简单拖拽操作实现3D物体的物理真实交互。该系统采用分工合作架构,结合语义理解、几何预测和动画生成三个模块,在保证运动精度的同时将计算开销降至现有方法的五分之一。系统支持实时交互,无需重新训练即可处理新物体,为虚拟现实和游戏开发提供了高效解决方案。
AI硬件的竞争才刚刚开始,华硕Ascent GX10这样将专业级算力带入桌面级设备的尝试,或许正在改写个人AI开发的游戏规则。
达尔豪斯大学研究团队系统性批判了当前AI多智能体模拟的静态框架局限,提出以"动态场景演化、智能体-环境共同演化、生成式智能体架构"为核心的开放式模拟范式。该研究突破传统任务导向模式,强调AI智能体应具备自主探索、社会学习和环境重塑能力,为政策制定、教育创新和社会治理提供前所未有的模拟工具。