作者:Google云计算引擎产品经理Chris Kleban和Ari Liberman
今天,我们将一次性宣布多条与云GPU相关的消息。首先,Google云端平台(GCP)的性能将随着NVIDIA P100 GPU测试版的公开发布获得进一步提升。第二,Google计算引擎现已普遍采用NVIDIA K80 GPU。第三,我们很高兴地宣布K80和P100 GPU均将推出阶梯使用折扣。
云GPU可以加快工作负载处理速度,包括机器学习训练和推理、地球物理数据处理、模拟、地震分析、分子建模、基因组学及更多高性能计算用例。
NVIDIA Tesla P100是前沿GPU技术。基于Pascal GPU架构,您可以通过减少实例来增加吞吐量,同时节省资金。与K80相比,P100 GPU可以让工作负载实现10倍提速。
与传统解决方案相比,云GPU在灵活性、性能和成本节约三方面做到了优化结合:
在今天的公告发布后,您已可以在全球四个地区部署NVIDIA Tesla P100和K80 GPU。现在,我们的所有GPU都支持阶梯使用折扣:在您使用我们的GPU运行持续的工作负载时,虚拟机的价格会自动降低(折扣最高30%)。享受这些折扣无需绑定服务商也无需预付最低费用保证金。
自推出GPU以来,我们已经看到用户从GPU提供的额外计算性能中获益。得到GPU加速的工作负载包括基因组学、计算金融,以及机器学习模型训练和推理等。我们的客户Shazam是在GCP上采用GPU的首批用户之一,他们采用GPU来为音乐识别服务提供支持。
“对于某些任务而言,用NVIDIA GPU代替传统CPU能获得成本效益和性能的提升。GPU与Shazam核心音乐识别工作负载的相性很好,我们由此将用户录制的音频片段与我们收录了4000多万首歌曲的目录相匹配。我们通过拍摄每首歌曲的音频签名,将其编译成自定义数据库格式并将其加载到GPU内存中。每当用户通过Shazams发现歌曲时,我们的算法就会使用GPU搜索该数据库,直到找到匹配项。每天成功匹配的次数超过2000万次。”—Shazam网站可靠性工程负责人
今天发布的云GPU公告让GCP又迈进了一步,由此成为所有硬件加速工作负载的理想选择。在NVIDIA P100 GPU加入后,我们将重点关注帮助您将新的用例带入生活。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。