作者:Google云计算引擎产品经理Chris Kleban和Ari Liberman
今天,我们将一次性宣布多条与云GPU相关的消息。首先,Google云端平台(GCP)的性能将随着NVIDIA P100 GPU测试版的公开发布获得进一步提升。第二,Google计算引擎现已普遍采用NVIDIA K80 GPU。第三,我们很高兴地宣布K80和P100 GPU均将推出阶梯使用折扣。
云GPU可以加快工作负载处理速度,包括机器学习训练和推理、地球物理数据处理、模拟、地震分析、分子建模、基因组学及更多高性能计算用例。
NVIDIA Tesla P100是前沿GPU技术。基于Pascal GPU架构,您可以通过减少实例来增加吞吐量,同时节省资金。与K80相比,P100 GPU可以让工作负载实现10倍提速。
与传统解决方案相比,云GPU在灵活性、性能和成本节约三方面做到了优化结合:
在今天的公告发布后,您已可以在全球四个地区部署NVIDIA Tesla P100和K80 GPU。现在,我们的所有GPU都支持阶梯使用折扣:在您使用我们的GPU运行持续的工作负载时,虚拟机的价格会自动降低(折扣最高30%)。享受这些折扣无需绑定服务商也无需预付最低费用保证金。
自推出GPU以来,我们已经看到用户从GPU提供的额外计算性能中获益。得到GPU加速的工作负载包括基因组学、计算金融,以及机器学习模型训练和推理等。我们的客户Shazam是在GCP上采用GPU的首批用户之一,他们采用GPU来为音乐识别服务提供支持。
“对于某些任务而言,用NVIDIA GPU代替传统CPU能获得成本效益和性能的提升。GPU与Shazam核心音乐识别工作负载的相性很好,我们由此将用户录制的音频片段与我们收录了4000多万首歌曲的目录相匹配。我们通过拍摄每首歌曲的音频签名,将其编译成自定义数据库格式并将其加载到GPU内存中。每当用户通过Shazams发现歌曲时,我们的算法就会使用GPU搜索该数据库,直到找到匹配项。每天成功匹配的次数超过2000万次。”—Shazam网站可靠性工程负责人
今天发布的云GPU公告让GCP又迈进了一步,由此成为所有硬件加速工作负载的理想选择。在NVIDIA P100 GPU加入后,我们将重点关注帮助您将新的用例带入生活。
好文章,需要你的鼓励
Turner & Townsend发布的2025年数据中心建设成本指数报告显示,AI工作负载激增正推动高密度液冷数据中心需求。四分之三的受访者已在从事AI数据中心项目,47%预计AI数据中心将在两年内占据一半以上工作负载。预计到2027年,AI优化设施可能占全球数据中心市场28%。53%受访者认为液冷技术将主导未来高密度项目。电力可用性成为开发商面临的首要约束,48%的受访者认为电网连接延迟是主要障碍。
商汤科技研究团队开发的InteractiveOmni是一个突破性的全模态AI助手,能够同时处理图像、视频、音频和文字,并具备强大的多轮对话记忆能力。该模型采用端到端架构,实现了从多模态输入到语音输出的统一处理,在多项基准测试中表现优异。特别值得关注的是,4B参数版本就能达到接近7B模型的性能,且已开源供研究使用。
亚马逊云服务宣布投资500亿美元,专门为美国政府构建AI高性能计算基础设施。该项目将新增1.3千兆瓦算力,扩大政府机构对AWS AI服务的访问,包括Amazon SageMaker、Amazon Bedrock和Claude聊天机器人等。预计2026年开工建设。AWS CEO表示此举将彻底改变联邦机构利用超级计算的方式,消除技术障碍,助力美国在AI时代保持领先地位。
腾讯混元团队联合北航、清华推出Honey-Data-15M,这是一个包含1500万高质量图像-问答对的开源数据集,通过创新的双层思考链策略让AI学会深度推理。基于此训练的Bee-8B模型在复杂推理任务上表现卓越,证明了专注数据质量能让开源AI达到商业级水平。