8月17日,在美国旧金山举行的英特尔信息技术峰会(Intel Developer Forum,简称IDF)上,浪潮首席科学家胡雷钧进行了先进技术报告演讲,他结合当前深度学习应用特点和先进计算技术架构进行分析,认为KNL+FPGA是加速深度学习的黄金搭档。
深度学习在人脸识别、语音识别、精准医疗以及无人驾驶等领域被广泛的应用,近年来在高性能计算技术的支持下,其发展十分迅速。然而,深度学习的发展也面临着众多困境,如深度学习软件扩展性不够高、计算性能不够高、深度学习线上识别能耗大等问题。
在多年的深度学习计算系统实践中,浪潮发现深度学习应用具备如下特点: 在进行线下的模型训练时,计算系统需要处理较大规模的数据量,所以训练时间非常长,它需要庞大的计算资源去训练一个模型;而当深度学习应用的相关服务或产品上线时,系统却因为要处理成千上万的人均访问量往往规模巨大,这时深度学习应用对能耗的控制需求就非常高。结合以上特点,浪潮首席科学家胡雷钧提出,深度学习平台构建应该根据线下训练和线上识别的不同应用特点分别定制开发高性能计算解决方案。
今年6月,英特尔推出新一代融核处理器Knights Landing(以下简称KNL)受到业内广泛关注,其具备多达 72 个核心,双精度浮点性能超过3TFlops,单精度则超过6TFlops,被认为是高性能计算和深度学习的革命性产品。胡雷钧认为,KNL的性能十分强大,非常合适做深度学习线下训练的平台构建。而对于能耗要求比较高的线上识别平台,胡雷钧认为可考虑采用FPGA,FPGA的能耗比是CPU的5倍以上,可大幅节省系统能耗,满足深度学习线上识别平台的构建需求。因此,采用KNL+FPGA的深度学习平台构建方案是加速深度学习应用的最佳组合。
KNL+FPGA深度学习平台构建方案在浪潮的应用实践中得到了证实,浪潮曾全球首发基于最新KNL平台的深度学习计算框架Caffe-MPI。此外,浪潮联合科大讯飞和Altera用OpenCL实现的FPGA深度学习语音识别加速方案采用CPU+Altera Arria 10 FPGA异构架构,软件完全采用高级编程模式OpenCL实现从CPU到FPGA的迁移,在100 bound数据的处理条件下,基于Altera ARRIA 10 FPGA的DNN运行时间比基于Intel Xeon E5-2650 V2 双路CPU的性能加速2.871倍,在DNN 实际运行测试中,FPGA可实现30GFlops/W的高性能功耗比,而采用OpenCL编程模型使得最终的软件开发周期比传统verilog方式缩短了1/3.
浪潮作为领先的云计算、大数据和高性能计算服务商,其深度学习计算系统已经应用于百度、阿里巴巴、奇虎360、科大讯飞等多家互联网厂商,市场占有率超过60%。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。