ZD至顶网服务器频道 06月13日 新闻消息:Nvidia公司正准备进军大数据业务,Nvidia ANZ地区经理Mark Patane称,未来几年这将是一笔价值数十亿美元的业务。
Patane认为,GPU将会是帮助企业处理大数据分析的关键解决方案,他指出,过去两年中Nvidia一直与Facebook和Google这样的公司合作帮助他们处理数据。
“他们找到我们,因为他们意识到无法利用普通的计算机,因为这些数据实在是太庞大了。过去几年他们一直与我们合作使用GPU,”他说。
Nvidia机器学习解决方案架构负责人Jon Barker博士进一步解释说,企业越来越多地承担起需要找出如何高效地处理每天他们收集来的数据的方法,并强调每天处理的数据量高达2.5EB,而且未来三年这个数据量将翻一番。
“其中大多数数据不是表格、结构化数据;大多数是图像、音频和文本。显然不管你是试图把控社会的脉搏,了解人们对你的品牌的情感,你都要基于各种事件做交易决策,或者如果你试图开发智能机器人辅助外科医生,或者自驾卡车,这些数据都将是应用的‘燃料’,”他表示。
“问题是我们如何通过分析数据了解内容,答案就是我们需要能够看到、听到、读到数据的机器,并且能够以超出人类水平和人类步伐给出理由。”
Patane认为,除了Nvidia一直提供GPU的高等教育和研究领域之外,大数据的增长对于Nvidia拓宽在商业市场的覆盖面来说也是一个机会。
“不管你是莫纳什大学,大的电信运营商,Google,在医疗领域,还是研究员——都需要GPU,”他说。
“根本的区别是,你可以在非GPU系统上尝试和运行数据,一旦你开始启动,运行算法,你可能需要数周时间才能拿到答案。有了GPU,这个速度会大大加快,几分钟内就可以得到回复。”
不过据Patane称,使用GPU处理大数据目前还是一件比较新的事情,GPU一直被用于工程分析、视频分析、视频回放用于病毒和DNA建模。
Nvidia最近发布了DGX-1服务器,采用Tesla P100 GPU,专门帮助企业处理大数据,Barker称这将帮助企业专注于应用开发而不是数据处理上。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。