ZD至顶网服务器频道 12月11日 编译:Facebook人工智能研究小组(FAIR)计划增加GPU硬件的投资达两倍之多,旨在将机器学习技术扩展到旗下更多的产品里。
Facebook的内部设计项目享誉业内,无论是简单地改善新闻推送(News Feed)算法抑或是为旗下的全球数据中心设计自主开发的全新硬件都做得不错。
全球最大的社交网络Facebook也不断对开源社区作贡献,日前传来的最新消息印证了以上两点,总部设在了加州门洛帕克的Facebook本周宣布计划开源旗下的人工智能(AI)硬件。
Facebook工程师Kevin Lee和Serkan Piantino周四在博客中强调表示,该款全新的开源AI硬件比市面上现成的产品更加有效和灵活,因为这些服务器在数据中心内可基于开放计算项目标准运行。
Lee和Piantino做了如下的解释,“许多高性能计算系统运行时需要特殊冷却设施和其他独特的基础设施,我们对新的服务器在散热和电源效率方面进行了优化,因此这些服务器可以在我们以室外空气制冷的开放计算标准数据中心里运行。”
该款新一代硬件代号为“Big Sur”,是专为训练神经网络设计的。该技术除了与AI有关系外,通常也与机器学习或深度学习有关。
芯片制造商Nvidia在过去一年里也加大了推出深度学习产品组合的力度,两家公司因而在这个项目上联手,该项目涉及到不少有待解决的东西。
Facebook号称是第一家采用Nvidia上个月推出的的Tesla M40 GPU加速器的公司。威力强大的GPU M40主要用于部署深层神经网络,是驱动Big Sur 平台和开放式机架兼容硬件的关键。
有了M40的底气,Facebook工程师称Big Sur 的速度是Facebook老产品的两倍,具有很大潜力,能够以两倍的速度训练大一倍的神经网络。
Nvidia公司还强调,在Facebook向开放计算项目提交了设计资料后,Big Sur将成为第一个为机器学习和人工智能研究开发的计算系统。
Facebook全球用户基础继续增长(截止9月30日已经达到15.5亿的月活跃用户),因而收集到的数据不断增加,从中获取的信息也可能不断膨胀。
社交媒体巨头Facebook似乎充分利用了这一点,旗下的人工智能研究小组(FAIR)计划增加GPU硬件的投资达两倍之多,旨在将机器学习技术扩展到旗下更多的产品里。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。