NVIDIA发布了一款端到端超大规模数据中心平台,该平台让Web服务公司能够为其浩繁的机器学习工作量加速。
NVIDIA超大规模加速器系列产品包含两款加速器。研究人员想要利用人工智能(AI)来为越来越多的应用提供处理动力,其中一款加速器让研究人员能够为这些应用中的每一个应用更快地开发和设计新的深度神经网络。另一款加速器是一款低功耗加速器,旨在将这些网络部署于整个数据中心。该系列加速器还包含一套GPU加速的库。
所有这些加在一起,让开发者能够在超大规模数据中心内利用强大的Tesla加速计算平台来驱动机器学习,打造史无前例且基于人工智能的应用。
这些全新的硬件与软件产品经过专门设计,可为竞相融入人工智能功能的海量Web应用加速。机器学习领域中的开创性进步让人们能够利用人工智能技术来打造更智能的应用与服务。
NVIDIA联合创始人兼首席执行官黄仁勋表示,人工智能竞赛正在进行。无论是从 PC、互联网还是从云计算的角度而言,机器学习都无疑是当今计算行业最重要的进展之一。它正在消费者云服务、汽车以及医疗等行业中掀起革命。机器学习对我们这代人来说是一大计算挑战。我们创造了Tesla超大规模加速器系列产品来使机器学习的速度提升10倍。这为数据中心节省了大量时间和成本。
点评:凭借NVIDIA在GPU加速计算方面的雄厚实力,其在人工智能和数据中心市场的表现非常值得期待。
好文章,需要你的鼓励
微软推出 Copilot+ PC 标准,要求配备高性能 NPU,引发 AI PC 市场格局变化。英伟达虽在数据中心 AI 领域占主导,但在 PC 端面临挑战。文章分析了英伟达的 AI PC 策略、NPU 与 GPU 的竞争关系,以及未来 GPU 可能在 Copilot+ 功能中发挥作用的前景。
专家预测,随着人工智能技术的迅速发展和广泛应用,2025 年可能成为 AI 泡沫破裂的关键一年。尽管 AI 仍有望在多模态模型和自动机器学习等领域取得突破,但技术瓶颈、投资回报率下降、监管趋严以及环境和伦理问题等因素可能导致 AI 热潮降温。未来 AI 发展将更注重平衡和可持续性。
研究表明,现有的公开 AI 模型在描述大屠杀历史时过于简单化,无法呈现其复杂性和细微之处。研究人员呼吁各相关机构数字化资料和专业知识,以改善 AI 对这段历史的理解和表述。他们强调需要在 AI 系统中加入更多高质量的数据,同时在审查和信息获取之间寻求平衡。
Google 推出名为 Titans 的新型 AI 架构,是 Transformer 的直接进化版。Titans 引入了神经长期记忆、短期记忆和基于惊喜的学习系统,使 AI 更接近人类思维方式。这一突破性技术有望彻底改变 AI 范式,推动机器智能向人类认知迈进一大步。