ZD至顶网服务器频道 11月12日 编译:很多老读者可能仍然认为英伟达只是一家图形处理器厂商,但根据该公司CEO黄仁勋的说法,其目前正在积极加快在计算与机器学习领域的发展脚步。
他解释称,“我已经在计算机行业拥有30多年的从业经历,而这已经成为有史以来最振奋人心的事件——计算机有能力进行学习,计算机有能力自行编写软件并实现人工智能,这一切都将给网络服务带来重大变革,”
有鉴于此,他于本周二演示了该公司刚刚面向机器学习市场发布的全新硬件产品。在数据中心方面,其推出了新的GPU加速方案以简化服务器在处理视频及图形工作负载时的任务强度,而就在同天下午该公司又拿出了其Jetson TX1。
这款尺寸仅为50毫米 x 87毫米的卡片包含一块处理能力达1万亿次的256核心Maxwell GPU,一块64位ARM A57 CPU以及4 GB内存,外加以太网与Wi-Fi连接功能。其将能够在明年第一季度正式投放市场,预定售价为299美元。
黄仁勋指出,这款新硬件以及英伟达开发并运行在其中的软件堆栈将极大简化机器学习的实践与实现方式。如此一来,机器学习网络的培训与部署工作将得到显著加速,而他认为未来将有大量面向Jetson TX1的应用程序不断涌现。
他指出,“我个人比较偏爱的一类潜在应用程序能够时刻关注家中儿童的实际动向,当他们外出玩耍时,没有什么比拥有这样一套监督保护方案更能让人安心。”
好文章,需要你的鼓励
这项来自苹果公司的研究揭示了视频大语言模型评测的两大关键问题:许多测试问题不看视频就能回答正确,且打乱视频帧顺序后模型表现几乎不变。研究提出VBenchComp框架,将视频问题分为四类:语言模型可回答型、语义型、时序型和其他类型,发现在主流评测中高达70%的问题实际上未测试真正的视频理解能力。通过重新评估现有模型,研究团队证明单一总分可能掩盖关键能力差距,并提出了更高效的评测方法,为未来视频AI评测提供了新方向。
大模型时代,玛丽·米克尔(Mary Meeker)的名字可能大家不一定熟悉,但是在互联网时代,这位被可被誉为“互联网女皇”的。她是美国风险投资家和前华尔街证券分析师,专注于互联网及新兴技术领域。玛丽·米克尔(Mary Meeker)发了一份340页的《人工智能趋势报告》,粗粗看了一下,并没有非常轰动的观点,但是数据比较全面
这篇来自KAIST AI研究团队的论文提出了"差分信息分布"(DID)这一创新概念,为理解直接偏好优化(DPO)提供全新视角。研究证明,当偏好数据编码了从参考策略到目标策略所需的差分信息时,DPO中的对数比率奖励形式是唯一最优的。通过分析DID熵,研究解释了对数似然位移现象,并发现高熵DID有利于通用指令跟随,而低熵DID适合知识密集型问答。这一框架统一了对DPO目标、偏好数据结构和策略行为的理解,为语言模型对齐提供理论支持。