ZD至顶网服务器频道 11月12日 编译:很多老读者可能仍然认为英伟达只是一家图形处理器厂商,但根据该公司CEO黄仁勋的说法,其目前正在积极加快在计算与机器学习领域的发展脚步。
他解释称,“我已经在计算机行业拥有30多年的从业经历,而这已经成为有史以来最振奋人心的事件——计算机有能力进行学习,计算机有能力自行编写软件并实现人工智能,这一切都将给网络服务带来重大变革,”
有鉴于此,他于本周二演示了该公司刚刚面向机器学习市场发布的全新硬件产品。在数据中心方面,其推出了新的GPU加速方案以简化服务器在处理视频及图形工作负载时的任务强度,而就在同天下午该公司又拿出了其Jetson TX1。
这款尺寸仅为50毫米 x 87毫米的卡片包含一块处理能力达1万亿次的256核心Maxwell GPU,一块64位ARM A57 CPU以及4 GB内存,外加以太网与Wi-Fi连接功能。其将能够在明年第一季度正式投放市场,预定售价为299美元。
黄仁勋指出,这款新硬件以及英伟达开发并运行在其中的软件堆栈将极大简化机器学习的实践与实现方式。如此一来,机器学习网络的培训与部署工作将得到显著加速,而他认为未来将有大量面向Jetson TX1的应用程序不断涌现。
他指出,“我个人比较偏爱的一类潜在应用程序能够时刻关注家中儿童的实际动向,当他们外出玩耍时,没有什么比拥有这样一套监督保护方案更能让人安心。”
好文章,需要你的鼓励
随着AI模型参数达到数十亿甚至万亿级别,工程团队面临内存约束和计算负担等共同挑战。新兴技术正在帮助解决这些问题:输入和数据压缩技术可将模型压缩50-60%;稀疏性方法通过关注重要区域节省资源;调整上下文窗口减少系统资源消耗;动态模型和强推理系统通过自学习优化性能;扩散模型通过噪声分析生成新结果;边缘计算将数据处理转移到网络端点设备。这些创新方案为构建更高效的AI架构提供了可行路径。
清华大学团队开发了CAMS智能框架,这是首个将城市知识大模型与智能体技术结合的人类移动模拟系统。该系统仅需用户基本信息就能在真实城市中生成逼真的日常轨迹,通过三个核心模块实现了个体行为模式提取、城市空间知识生成和轨迹优化。实验表明CAMS在多项指标上显著优于现有方法,为城市规划、交通管理等领域提供了强大工具。
Meta以143亿美元投资Scale AI,获得49%股份,这是该公司在AI竞赛中最重要的战略举措。该交易解决了Meta在AI发展中面临的核心挑战:获取高质量训练数据。Scale AI创始人王亚历山大将加入Meta领导新的超级智能研究实验室。此次投资使Meta获得了Scale AI在全球的数据标注服务,包括图像、文本和视频处理能力,同时限制了竞争对手的数据获取渠道。
MIT研究团队发现了一个颠覆性的AI训练方法:那些通常被丢弃的模糊、失真的"垃圾"图片,竟然能够训练出比传统方法更优秀的AI模型。他们开发的Ambient Diffusion Omni框架通过智能识别何时使用何种质量的数据,不仅在ImageNet等权威测试中创造新纪录,还为解决AI发展的数据瓶颈问题开辟了全新道路。