NVIDIA发布了一款端到端超大规模数据中心平台,该平台让 Web 服务公司能够为其浩繁的机器学习工作量加速。
NVIDIA 超大规模加速器系列产品包含两款加速器。研究人员想要利用人工智能 (AI) 来为越来越多的应用提供处理动力,其中一款加速器让研究人员能够为这些应用中的每一个应用更快地开发和设计新的深度神经网络。另一款加速器是一款低功耗加速器,旨在将这些网络部署于整个数据中心。该系列加速器还包含一套 GPU 加速的库。
所有这些加在一起,让开发者能够在超大规模数据中心内利用强大的 Tesla 加速计算平台来驱动机器学习,打造史无前例且基于人工智能的应用。
NVIDIA 联合创始人兼首席执行官黄仁勋 (Jen-Hsun Huang) 表示:“人工智能竞赛正在进行。无论是从 PC、互联网还是从云计算的角度而言,机器学习都无疑是当今计算行业最重要的进展之一。它正在消费者云服务、汽车以及医疗等行业中掀起革命。”
他指出:“机器学习对我们这代人来说是一大计算挑战。我们创造了 Tesla 超大规模加速器系列产品来使机器学习的速度提升 10 倍。这为数据中心节省了大量时间和成本。”
这些全新的硬件与软件产品经过专门设计,可为竞相融入人工智能功能的海量 Web 应用加速。机器学习领域中的开创性进步让人们能够利用人工智能技术来打造更智能的应用与服务。
人们正在利用机器学习来使语音识别变得更加准确。机器学习能够在视频或照片中实现对象识别与场景识别,能够添加标签以便于之后进行搜索。机器学习能够在视频或照片中实现人脸识别,即使是在人脸被部分遮挡的时候也能够识别。机器学习还能够为那些了解个人品味与兴趣的服务提供处理动力,这类服务可制定时间表、提供相关的新闻报道、以对话的口吻准确地对语音指令作出响应。
机器学习使这类神奇的功能成为了可能。人们所面临的挑战是如何获得极高的超级计算性能来开发和训练越来越多的深度神经网络、如何获得足够的处理能力来为使用这类服务的消费者即时响应数十亿次查询。NVIDIA 超大规模加速器系列产品旨在为这些工作量加速并大幅提升数据中心的吞吐量。
NVIDIA Tesla 平台的这些新成员包括:
• NVIDIA® Tesla® M40 GPU– 性能最强的加速器,专为训练深度神经网络而设计
• NVIDIA Tesla M4 GPU– 低功耗的小巧型加速器,用于机器学习推理以及图像与视频处理的流式传输
• NVIDIA Hyperscale Suite – 一套丰富的软件,专为机器学习和视频处理而优化
NVIDIA Tesla M40 GPU 加速器
数据科学家需要利用海量的数据来训练其深度神经网络以达到更高的整体准确度,NVIDIA Tesla M40 GPU 加速器让数据科学家在训练自己的深度神经网络时能够节省数天乃至数周的时间。其主要特性包括:
• 专为机器学习而优化 – 与 CPU 相比可令训练时间缩短 8 倍 (在典型 AlexNet 训练中的对比结果为 1.2 天比 10 天)。
• 可靠性高、专为全年不间断运行而打造 – 经过专门设计并在数据中心环境中经测试可提供极高的可靠性。
• 可扩展的性能 – 对 NVIDIA GPUDirect 的支持使其能够快速训练多节点神经网络。
NVIDIA Tesla M4 GPU 加速器
NVIDIA Tesla M4 加速器是一款低功耗 GPU,专为超大规模环境而打造并针对苛刻的高增长型 Web 服务应用而进行了优化。这些应用包括视频转码、图像与视频处理以及机器学习推理等等。主要特性包括:
• 吞吐量更高 – 同时对多路视频流进行转码、增强以及分析的吞吐量最高可达 CPU 的 5 倍。
• 功耗低 – 借助用户可选的功率配置文件,Tesla M4 仅消耗 50-75 瓦特的功率,在视频处理与机器学习算法方面最多比 CPU 节能 10 倍。
• 外形小巧 – 刀卡式 PCIe 设计适合安装到超大规模数据中心系统所需的各种机箱内。
NVIDIA Hyperscale Suite
全新的 NVIDIA Hyperscale Suite 包含针对开发者与数据中心经理的各种工具,这些工具专为部署 Web 服务而设计,其中包括:
• cuDNN – 业界最流行的算法软件,可处理用于人工智能应用的深度卷积神经网络。
• GPU 加速的 FFmpeg 多媒体软件 – 可利用应用广泛的 FFmpeg 软件来加速视频转码与视频处理。
• NVIDIA GPU REST Engine – 让人们能够轻松创建和部署高吞吐量低延迟的加速型 Web 服务,这些服务包括动态重调图像尺寸、搜索加速、图像分类以及其它任务。
• NVIDIA Image Compute Engine – 包含 REST API的 GPU 加速型服务,在重调图像尺寸方面能够比 CPU 快 5 倍。
Mesosphere 的支持
业内的 Mesosphere 公司最近表示支持 Tesla 加速计算平台,该公司宣布,目前正与 NVIDIA 携手在 Apache Mesos 和 Mesosphere 数据中心操作系统 (DCOS) 中加入对 GPU 技术的支持。此举将让 Web 服务公司能够更轻松地为其下一代应用打造和部署加速的数据中心。
写在后面
数据量如今被越来越多的人重视,说到底并不是之前不存在数据,而是数据的激增让人们对其无法不重视,NVIDIA全新的超大规模加速器可以帮助用户在处理数据时缩短时间,并且还能为Web数据中心提升其机器学习的吞吐量,从而使得用户的机器变“聪明”。
好文章,需要你的鼓励
Anthropic推出首个行业定制版AI产品Claude for Financial Services,专为金融行业打造。该服务基于Claude企业版,提供更高使用限制、内置数据连接器以及提示词库。新版本预装了连接FactSet、PitchBook等金融数据提供商的MCP连接器,并包含实施支持。针对金融分析师工作负载大的特点,该服务显著提升了速率限制,同时提供提示词库帮助用户更好地构建查询。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
多年来,Cursor、Windsurf和GitHub Copilot等代码编辑工具一直是AI编程的标准。但随着代理AI能力增强,AI系统正从处理代码转向直接与系统终端交互。Anthropic、DeepMind和OpenAI都推出了命令行编程工具。终端工具采用更广阔视角,不仅关注代码,还涉及整个程序运行环境,包括DevOps任务。研究显示传统代码助手可能降低效率,而Warp等终端工具在TerminalBench基准测试中表现出色,能够自主处理开发者的非编码工作。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。