ZD至顶网服务器频道 10月22日 编译:近日芯片设计厂商ARM发布了最新的业绩结果,从数据来看这一季度又是一个增长的季度,营收同比成长17%,达3.755亿美元(23.8448亿人民币),而第3季度的税前利润同比增长27%,达12.5814亿人民币。
总部设在英国剑桥的ARM今年似乎会创纪录,之前第2季度获得了大丰收,7月发布的收入和利润分别实现同比22%和32%的增长。
但这却也未能阻止公司的股价受苹果公司(此家公司的命运与ARM的命运紧密相连)拖累而出现“令人失望”的结果。因此,ARM似乎急于想摆脱对智能手机市场的依赖。
ARM公司已经排出新的芯片阵容,昨天公布了旗下的Mali-470处理器,目标是“可携带”和“物联网”(IoT)市场。
ARM还加强了提供物联网解决方案的能力,今年上半年收购了以色列的物联网公司的Sansa,上个月又签订协议加入IBM的物联网基金会。
ARM首席高管Simon Segars称,ARM公司设计的芯片可用于“广泛范畴内的设备”,包括智能手机、企业设备(如基站和服务器)以及消费类电子产品(如数字电视)。
他表示,“ARM技术在产品方面和市场上的部署日益多元化,从构成物联网的、无处不在的传感器到高能效智能手机到高性能服务器等等。”
服务器基准检验ScaleMark首次亮相于 ARM活动
据美国加州圣何塞消息,新的数据中心服务器基准检验ScaleMark将在下个月召开的ARM技术大会上亮相,ScaleMark的目标是利用工作负载提供独立于处理器的性能指标。
ARM的这一步与其打入服务器市场的计划有关。ARM推出打入服务器市场的计划后引起关注,多家公司开始已经有设计产品发货。高通上个月宣布了自己的计划,一家中国启动公司8月份提出了积极的计划,Broadcom预计会在该次的ARM会上推出备受期待的SoC。
嵌入式微处理器基准协会(EEMBC)主席Markus Levy 表示,“传统的基准检验不利于横向扩展的服务器。“ScaleMark是EEMBC截至目前为止在系统测试层次上走出的最大一步。
Lecy表示,诸如Spec一类的基准检测的重点放在缓存性能上,没有考虑硬盘运作的影响,而硬盘运作是影响数据中心性能的一个重要因素。而诸如Cloud Suite 和Google Perf Kit的系统层次测试对很多应用程序有效,但不能提供可重复的结果。
EEMBC表示,当前的基准检测在有些方面给出前后不一的的结果,ScaleMark现已进入Beta测试阶段,将于11月推出,开始时只含一个Memcached测试和一个用于流媒体的测试。这两个测试都是基于有章可循的实际数据中心应用程序的配置,且可以进行自动安装。Memcached应用程序用到的数值源于Facebook的应用个案,流媒体应用程序是自家版本,其作用是复制诸如Netflix或YouTube的内部代码。
ARM、Cavium、Imagination科技公司和英特尔一年前开始打造ScaleMark,Levy表示,“我们正在讨论下一代的事情,但还没有着落。”
对于从请求到访问延迟不超过10毫秒的系统,ScaleMark会给出数据吞吐量。因此,假如技术人员想在基于x86的服务器和基于ARM的服务器之间做比较的话,ScaleMark也说不出个究竟来。
Levy称,“必须考虑性能数字以外的东西,要评估系统的价格和功耗”才能有一个完整的评估。他表示,“大家作比较时必须苹果比苹果,举个例子,不可以拿10,000美元的英特尔系统和1,000美元的Cavium系统相比。”
好文章,需要你的鼓励
AWS在纽约峰会上发布Amazon Bedrock AgentCore,这是一个企业级AI代理构建、部署和运营平台。该平台支持开源框架如CrewAI、LangChain等,提供运行时、内存、身份管理、可观测性等核心服务。Box、巴西伊塔乌银行等企业已开始使用该平台构建生产级应用。平台采用按需付费模式,目前在部分AWS区域提供预览版,2025年9月16日前免费试用。
MBZUAI研究团队发布了史上最大的开源数学训练数据集MegaMath,包含3716亿个Token,是现有开源数学数据集的数十倍。该数据集通过创新的数据处理技术,从网页、代码库和AI合成等多个来源收集高质量数学内容。实验显示,使用MegaMath训练的AI模型在数学推理任务上性能显著提升,为AI数学能力发展提供了强大支撑。
网约车巨头Uber宣布与中国科技公司百度达成多年战略合作,计划在美国和中国以外地区推出数千辆自动驾驶出租车。服务将从今年晚些时候开始,首先在亚洲和中东的未指定国家推出。百度的Apollo自动驾驶汽车已在中国11个城市运营,成本仅为3.7万美元,远低于行业平均的20万美元。用户可选择乘坐自动驾驶车辆或人工驾驶车辆。
这项由多个知名机构联合开展的研究揭示了AI系统的"隐形思维"——潜在推理。不同于传统的链式思维推理,潜在推理在AI内部连续空间中进行,不受语言表达限制,信息处理能力提升约2700倍。研究将其分为垂直递归和水平递归两类,前者通过重复处理增加思考深度,后者通过状态演化扩展记忆容量。