异构计算简史
为什么要用异构计算,想想开头的例子就清楚了,如果人脑就是主流的通用处理器的话,那么异构计算就是为这个处理器额外配备的“计算器”或工具,用来执行更高复杂度的计算或应用,而这种复杂度主要指的就是超大规模的并行处理,对于更擅长串行处理的CPU来说是一个极大的互补。
异构计算的概念本身其实并不新鲜,最早可以追溯到30年前(在某些定义中,则是以指令集的处理模式来区分异构与否,但基本上已并非是主流概念),可要谈到异构计算的真正崛起,则要从2001年用GPU实现通用矩阵计算开始,而标志性事件发生在2005年,GPU终于在执行LU分解(用于解线性方程组)的性能方面战胜了CPU,从那之后,基于GPU的大规模并行计算方案开始崭露头角。
CPU+GPGPU是目前最为知名的异构计算组合,也是第一代异构计算的典型代表
2007年,NVIDIA推出了专门用于简化GPU应用编程的统一计算设备架构(CUDA,Compute Unified Device Architecture),它标志着GPU的通用计算应用开发开始走向易用、成熟。时至今日,GPU+CPU的异构计算平台已经越来越多的出现在高性能计算系统中(HPC),大大弥补了CPU在浮点运算方面的能力。
当然,在GPGPU之前其实还有多种芯片在向通用计算领域迈进,其中之一就是FPGA,它是最可匹敌GPGPU的异构计算技术。
2012年英特尔发布的Atom E6x5C嵌入式处理器,就已经在单Socket封装上整合了Altera的FPGA,但这个FPGA的主要任务不是计算,而是针对不同应用场景的I/O定制化与指定的信号处理,很难用于通用场合
FPGA于1985年诞生,很快就开始尝试在通用计算领域的运用,可以说比GPGPU的出现还要早。GPGPU所擅长的浮点运算,FPGA同样也在积极参与,但成果远没有GPGPU显著(看看超级计算机全球TOP500的排名配置就知道了)。在整数型运算方面,虽然FPGA更有优势,可惜那时的计算量除非个别应用,普遍并不大,CPU自己就能搞定,所以FPGA加速更多用于细分应用市场,应用规模相对来说并不大。不过,随着物联网、大数据、人工智能、机器学习等新兴的大规模数据处理需求的不断涌现,现在它的机会要来了,而且底层互联 技术也比当前的异构系统更为先进,它就是由OpenPOWER CAPI所开辟的新一代异构计算平台,主打CAPI+FPGA的组合。
而在我看来,它们其实是开启了第二代异构计算的时代。
好文章,需要你的鼓励
惠普企业(HPE)发布搭载英伟达Blackwell架构GPU的新服务器,抢占AI技术需求激增市场。IDC预测,搭载GPU的服务器年增长率将达46.7%,占总市场价值近50%。2025年服务器市场预计增长39.9%至2839亿美元。英伟达向微软等大型云服务商大量供应Blackwell GPU,每周部署约7.2万块,可能影响HPE服务器交付时间。HPE在全球服务器市场占13%份额。受美国出口限制影响,国际客户可能面临额外限制。新服务器将于2025年9月2日开始全球发货。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
安全专业协会ISACA面向全球近20万名认证安全专业人员推出AI安全管理高级认证(AAISM)。研究显示61%的安全专业人员担心生成式AI被威胁行为者利用。该认证涵盖AI治理与项目管理、风险管理、技术与控制三个领域,帮助网络安全专业人员掌握AI安全实施、政策制定和风险管控。申请者需持有CISM或CISSP认证。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。