ZD至顶网服务器频道 09月10日 评论分析(文/赵效民):
什么是异构计算?
异构计算,可能在很多人看来感觉高深莫测,我们可以先用一个比喻来简单的解释一下。比如在做简单的整数算数时,知道算法口诀的人,心算即可,但遇到比较复杂的算数问题时,就得需要一个计算器了,而在这个运算过程中,一些简单的计算可以提前由心算完成再输入计算器,比如计算“(5+2)÷26”,可能我们直接就输入“7÷26”了。又或者是完全交给计算器进行计算,但这也需要人脑控制手指进行计算器的数值输入,此时你的大脑与计算器就构成了完成这道数学计算任务的“异构计算系统”。
就像你的大脑的结构与计算器完全不一样,异构计算,顾名思义就是在系统内,参与计算的执行单元在指令集架构(ISA, Instruction Set Architectures)层面是不同的。最为典型的例子,就是通用计算图形处理器(GPGPU,General-Purpose computing on Graphics Processing Units),与现场可编程门阵列 (FPGA,Field-Programmable Gate Array)和传统CPU平台组成的异构计算系统。从严格意义上讲,ISA相同,只是不同大小的处理核心的组合,并不算是异构计算,比如英特尔的x86处理器+MIC(集成众核加速器),以及ARM处理器的big.LITTLE大小核心的混合设计。
好文章,需要你的鼓励
OpenAI研究科学家Alexander Wei宣布,公司一个未发布的实验模型在国际数学奥林匹克竞赛中解决了六道题目中的五道,获得42分中的35分,达到金牌水平。该模型展现出类似人类数学家的推理能力,能够构建复杂严密的论证。这标志着AI在创造性问题解决方面的重要突破,不过该技术预计数月内不会公开发布。
约翰霍普金斯大学与StepFun公司联合研究,成功让AI学会"边看边思考"的视觉推理能力。通过两阶段训练方法,先让AI在文字推理中掌握认知行为,再迁移到视觉任务中。开发的OVR模型在多项测试中创造新纪录,为AI教育助手、医疗诊断、科研分析等应用奠定基础。
本文探讨了判断AI是否达到通用人工智能(AGI)和人工超级智能(ASI)水平所需的问题数量。目前缺乏确定的测试方法来评估是否达到顶级AI水平。基于图灵测试的分析,作者提出仅通过少量问题难以全面评估智能水平。参考美国国会图书馆主题标引(LCSH)的40万个主题领域,如果每个领域提出1万个问题,将需要40亿个问题来全面测试AGI。这种大规模测试虽然在逻辑上合理,但在实际操作中面临巨大挑战。
阿姆斯特丹大学研究团队开发出"缓存驾驶"技术,通过修改AI模型的键值缓存而非重新训练,让小型语言模型瞬间获得大模型的推理能力。该技术仅需一次调整就能让模型展现逐步推理行为,计算开销几乎为零,在多个推理基准测试中表现优异,还能实现推理风格迁移。