ZD至顶网服务器频道 09月01日 编译:AMD本周在旧金山召开的VMworld大会推出了一款新的、基于硬件的GPU虚拟化技术,该技术针对的是虚拟化工作站。
AMD声称这款被称为AMD Multiuser GPU的产品能够允许多达15个虚拟化桌面共享同一个图形处理器,而且不会有任何性能上的损失。
这样做的目标是为虚拟化的GPU密集工作负载提供硬件图形加速,包括设计和制造以及多媒体应用程序和GPU加速计算等。
AMD的企业副总裁Sean Burke在一份声明中表示,“当这些AMD GPU根据组织的需求正确配置之后,最终用户就能够同等地访问GPU,无论他们是何种工作负载。” Sean Burke表示,“为每一个用户都提供了虚拟化的性能进行设计、创造并且执行他们的工作负载,而没有一个用户会占据整个GPU。”
多用户GPU的设计目标是针对基于VMware vSphere/ESXi 5.5及以后产品的环境的,它为DirectX 12、OpenGL 4.4和OpenCL 2.0提供了加速驱动,这意味着用户应该只需要在虚拟化环境之中就能够完成他们在本地机器上能做的绝大部分工作。
到底有多少用户可以利用多用户GPU取决于他们想要做什么。虽然分享同样虚拟化的芯片使用Office类型应用程序的典型用户可以多达15个,极端图形密集的工作负载只能支持在两个并发用户之间分享芯片,之间使用不同的方案。
但是AMD表示,基于硬件的虚拟化做法的另一个好处是让恶意用户更难侵入系统偷看其他用户的屏幕,在这点上比基于软件的系统安全。
要知道,很多“基于软件”的业务都是直接打击AMD的竞争对手的,NVIDIA没有AMD在最近的芯片中使用的基于硬件的GPU虚拟化技术。
不过,NVIDIA确实利用VMworld推出了旗下新版本的Grid桌面虚拟化技术,该技术是基于它最新的Tesla GPUs的,该公司声称它能够每台服务器支持多达128个GPU加速用户,只要您的主板支持。
好文章,需要你的鼓励
苏黎世大学的实验显示,AI的说服成功率达到9-18%,而人类平均只有2.7%,AI比人类强6倍。在4个月内,13个AI账号成功说服了上百位Reddit用户改变观点,且没有人识破它们的身份
韩国科学技术院研究团队提出"分叉-合并解码"方法,无需额外训练即可改善音视频大语言模型的多模态理解能力。通过先独立处理音频和视频(分叉阶段),再融合结果(合并阶段),该方法有效缓解了模型过度依赖单一模态的问题,在AVQA、MUSIC-AVQA和AVHBench三个基准测试中均取得显著性能提升,特别是在需要平衡音视频理解的任务上表现突出。
Roig Arena 将于 2025 年 9 月在瓦伦西亚开业,借助 Extreme Networks 的 6GHz Wi-Fi 与数据分析技术,实现无缝运营与个性化观众体验,打造全天候活动中心。
这项研究利用大语言模型解决科学新颖性检测难题,南洋理工大学团队创新性地构建了闭合领域数据集并提出知识蒸馏框架,训练轻量级检索器捕捉想法层面相似性而非表面文本相似性。实验表明,该方法在市场营销和NLP领域显著优于现有技术,为加速科学创新提供了有力工具。