ZD至顶网服务器频道 09月01日 编译:AMD本周在旧金山召开的VMworld大会推出了一款新的、基于硬件的GPU虚拟化技术,该技术针对的是虚拟化工作站。
AMD声称这款被称为AMD Multiuser GPU的产品能够允许多达15个虚拟化桌面共享同一个图形处理器,而且不会有任何性能上的损失。
这样做的目标是为虚拟化的GPU密集工作负载提供硬件图形加速,包括设计和制造以及多媒体应用程序和GPU加速计算等。
AMD的企业副总裁Sean Burke在一份声明中表示,“当这些AMD GPU根据组织的需求正确配置之后,最终用户就能够同等地访问GPU,无论他们是何种工作负载。” Sean Burke表示,“为每一个用户都提供了虚拟化的性能进行设计、创造并且执行他们的工作负载,而没有一个用户会占据整个GPU。”
多用户GPU的设计目标是针对基于VMware vSphere/ESXi 5.5及以后产品的环境的,它为DirectX 12、OpenGL 4.4和OpenCL 2.0提供了加速驱动,这意味着用户应该只需要在虚拟化环境之中就能够完成他们在本地机器上能做的绝大部分工作。
到底有多少用户可以利用多用户GPU取决于他们想要做什么。虽然分享同样虚拟化的芯片使用Office类型应用程序的典型用户可以多达15个,极端图形密集的工作负载只能支持在两个并发用户之间分享芯片,之间使用不同的方案。
但是AMD表示,基于硬件的虚拟化做法的另一个好处是让恶意用户更难侵入系统偷看其他用户的屏幕,在这点上比基于软件的系统安全。
要知道,很多“基于软件”的业务都是直接打击AMD的竞争对手的,NVIDIA没有AMD在最近的芯片中使用的基于硬件的GPU虚拟化技术。
不过,NVIDIA确实利用VMworld推出了旗下新版本的Grid桌面虚拟化技术,该技术是基于它最新的Tesla GPUs的,该公司声称它能够每台服务器支持多达128个GPU加速用户,只要您的主板支持。
好文章,需要你的鼓励
两家公司在OverdriveAI峰会上分享了AI应用经验。Verizon拥有超过1000个AI模型,用于预测客户呼叫原因和提供个性化服务,将AI推向边缘计算。Collectors则利用AI识别收藏品真伪,将每张卡片的鉴定时间从7分钟缩短至7秒,估值从8.5亿美元增长至43亿美元。
阿布扎比科技创新研究院团队首次发现大语言模型生成的JavaScript代码具有独特"指纹"特征,开发出能够准确识别代码AI来源的系统。研究创建了包含25万代码样本的大规模数据集,涵盖20个不同AI模型,识别准确率在5类任务中达到95.8%,即使代码经过混淆处理仍保持85%以上准确率,为网络安全、教育评估和软件取证提供重要技术支持。
Hammerspace发布v5.2数据平台软件,通过更快的元数据读取、更好的数据放置和扩展性优化提升AI数据访问性能。新版本IO500总分提升33.7%,总带宽翻倍,IOR-Hard-Read测试提升超800%。增加了Tier 0亲和性功能,支持GPU服务器本地存储访问,减少集群内网络流量。新增Oracle云支持、Kerberos认证和标签化NFS,提供更细粒度的访问控制。该软件将于12月正式发布。
斯坦福大学研究团队首次系统比较了人类与AI在文本理解任务中的表现。通过HUME评估框架测试16个任务发现:人类平均77.6%,最佳AI为80.1%,排名第4。人类在非英语文化理解任务中显著优于AI,而AI在信息处理任务中更出色。研究揭示了当前AI评估体系的缺陷,指出AI的高分往往出现在任务标准模糊的情况下。