ZD至顶网服务器频道 08月11日 新闻消息:今年年初,NVIDIA发布了深度学习中国战略。近半年时间中,随着这一战略的快速推进,NVIDIA不仅与百度、阿里巴巴和腾讯等多家科技巨头之间展开了深入的合作,同时也将不断加入这一领域的新兴企业视为深度学习生态发展的重要部分。继此前与旷视科技、格灵深瞳等新兴企业展开合作之后,NVIDIA近日与另一家人脸识别技术领域的创新公司Linkface达成长期战略合作,共同推动人脸识别技术创新与应用拓展。
Linkface公司是人工智能领域新兴企业的代表,以提供世界领先的人脸识别技术服务为目标。该公司利用通过NVIDIA GPU加速的深度学习研究平台,先后取得了FDDB人脸检测公开测试世界第一、300-W Benchmark准确率世界第一、LFW人脸识别准确率达99.5%以上的成绩。
NVIDIA全球副总裁兼中国区总经理张建中表示:“深度学习是NVIDIA当前非常重视的领域,除了与百度、阿里巴巴、腾讯以及科大讯飞等已经在该领域处于领先地位的企业有着深入合作之外,新兴企业也是NVIDIA的关注重点,NVIDIA十分愿意通过GPU来帮助各个领域的新兴企业不断创新,推动整个深度学习生态的发展。Linkface拥有雄厚的实力和技术背景,希望通过与Linkface的长期战略合作,进一步释放GPU的计算潜能,在人脸识别领域取得更高的突破”。
“NVIDIA致力于在产品和市场层面推动深度学习领域的创新,通过不断升级GPU性能并持续更新cuDNN、DIGITS等深度学习软件,以及与曙光、浪潮等合作伙伴推出强大的深度学习研究平台,从而助力新兴企业的不断创新。同时,NVIDIA还在北京、上海和广州开展多场深度学习研讨会,吸引了近400家企业的参加”,NVIDIA中国区高级市场总监刘念宁表示:“Linkface作为人脸识别领域极具竞争力的创新公司,NVIDIA除了提供更多的技术和解决方案,也将与其一同在人类识别的市场推广方面展开多维度合作”。
深度学习的快速升温,正是得益于GPU的应用,其强大的并行计算能力,使深度神经网络训练速度大幅提升。Linkface正是通过采用NVIDIA Tesla K40 GPU加速器,将计算时间缩短几十到上百倍,使得原来需要30天的深度学习训练的计算量,只需要10个小时即可完成。最终,NVIDIA的GPU帮助Linkface在今年5月取得FDDB公开测试世界第一的成绩。
GPU性能不断升级的硬件可以让Linkface不断创新人脸检测流程,验证更多的方法,尝试更多的模型,使得拥有强大实力的Linkface在FDDB等平台测试上取得了世界瞩目的成绩的突破。随着Linkface设计模型越发复杂,团队对硬件的需求也会随之变高,NVIDIA针对深度学习不断推出的GPU产品和相关软件工具,为Linkface不断提升自己在人脸识别领域的创新和突破提供了强大的支持。
目前,NVIDIA 正在进行深度学习领域的广泛布局,通过GPU技术,大大促进了深度学习研究领域的发展。通过与更多诸如Linkface、旷视科技以及格灵深瞳等新型企业的合作,进一步建立并完善深度学习技术研发、应用的生态系统,给科技创新带来的巨大增长潜力。未来几年,随着计算机视觉技术的稳步发展,促使产品商业化加速,人工智能将成为产业界追逐的新领地。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。