ZD至顶网服务器频道 08月11日 新闻消息:今年年初,NVIDIA发布了深度学习中国战略。近半年时间中,随着这一战略的快速推进,NVIDIA不仅与百度、阿里巴巴和腾讯等多家科技巨头之间展开了深入的合作,同时也将不断加入这一领域的新兴企业视为深度学习生态发展的重要部分。继此前与旷视科技、格灵深瞳等新兴企业展开合作之后,NVIDIA近日与另一家人脸识别技术领域的创新公司Linkface达成长期战略合作,共同推动人脸识别技术创新与应用拓展。
Linkface公司是人工智能领域新兴企业的代表,以提供世界领先的人脸识别技术服务为目标。该公司利用通过NVIDIA GPU加速的深度学习研究平台,先后取得了FDDB人脸检测公开测试世界第一、300-W Benchmark准确率世界第一、LFW人脸识别准确率达99.5%以上的成绩。
NVIDIA全球副总裁兼中国区总经理张建中表示:“深度学习是NVIDIA当前非常重视的领域,除了与百度、阿里巴巴、腾讯以及科大讯飞等已经在该领域处于领先地位的企业有着深入合作之外,新兴企业也是NVIDIA的关注重点,NVIDIA十分愿意通过GPU来帮助各个领域的新兴企业不断创新,推动整个深度学习生态的发展。Linkface拥有雄厚的实力和技术背景,希望通过与Linkface的长期战略合作,进一步释放GPU的计算潜能,在人脸识别领域取得更高的突破”。
“NVIDIA致力于在产品和市场层面推动深度学习领域的创新,通过不断升级GPU性能并持续更新cuDNN、DIGITS等深度学习软件,以及与曙光、浪潮等合作伙伴推出强大的深度学习研究平台,从而助力新兴企业的不断创新。同时,NVIDIA还在北京、上海和广州开展多场深度学习研讨会,吸引了近400家企业的参加”,NVIDIA中国区高级市场总监刘念宁表示:“Linkface作为人脸识别领域极具竞争力的创新公司,NVIDIA除了提供更多的技术和解决方案,也将与其一同在人类识别的市场推广方面展开多维度合作”。
深度学习的快速升温,正是得益于GPU的应用,其强大的并行计算能力,使深度神经网络训练速度大幅提升。Linkface正是通过采用NVIDIA Tesla K40 GPU加速器,将计算时间缩短几十到上百倍,使得原来需要30天的深度学习训练的计算量,只需要10个小时即可完成。最终,NVIDIA的GPU帮助Linkface在今年5月取得FDDB公开测试世界第一的成绩。
GPU性能不断升级的硬件可以让Linkface不断创新人脸检测流程,验证更多的方法,尝试更多的模型,使得拥有强大实力的Linkface在FDDB等平台测试上取得了世界瞩目的成绩的突破。随着Linkface设计模型越发复杂,团队对硬件的需求也会随之变高,NVIDIA针对深度学习不断推出的GPU产品和相关软件工具,为Linkface不断提升自己在人脸识别领域的创新和突破提供了强大的支持。
目前,NVIDIA 正在进行深度学习领域的广泛布局,通过GPU技术,大大促进了深度学习研究领域的发展。通过与更多诸如Linkface、旷视科技以及格灵深瞳等新型企业的合作,进一步建立并完善深度学习技术研发、应用的生态系统,给科技创新带来的巨大增长潜力。未来几年,随着计算机视觉技术的稳步发展,促使产品商业化加速,人工智能将成为产业界追逐的新领地。
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
KAIST AI团队通过深入分析视频生成AI的内部机制,发现了负责交互理解的关键层,并开发出MATRIX框架来专门优化这些层。该技术通过语义定位对齐和语义传播对齐两个组件,显著提升了AI对"谁对谁做了什么"的理解能力,在交互准确性上提升约30%,为AI视频生成的实用化应用奠定了重要基础。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
乔治亚理工学院和微软研究团队提出了NorMuon优化器,通过结合Muon的正交化技术与神经元级自适应学习率,在1.1B参数模型上实现了21.74%的训练效率提升。该方法同时保持了Muon的内存优势,相比Adam节省约50%内存使用量,并开发了高效的FSDP2分布式实现,为大规模AI模型训练提供了实用的优化方案。