ZDNet至顶网服务器频道 06月17日 新闻消息:AMD推出了代号为Kaveri的新一代APU,真正将CPU和GPU融合在一起,真正实现了HSA(Heterogeneous System Architecture,即异构系统架构),这也是AMD在当年推出Athlon、Opteron、真双核产品之后又一款在架构层面上有颠覆性创新意义的产品,将为AMD未来的产品技术发展奠定坚实的基础,是AMD在技术领域以及产品领域的一个重要里程碑。
GPU在数据并行计算和图形处理上有着天然的优势,CPU适合处理例如操作系统、轻负载应用等传统工作。因此,从处理器设计的角度,我们需要让合适的计算单元做合适的工作。根据应用的计算性能要求,平衡使用CPU和GPU资源,甚至将以前(异构计算出现之前)需要CPU做、但又勉为其难的工作交给更适合的计算设备GPU,就能很好地降低设备功耗。
HSA架构下,CPU和GPU在内存管理上是统一的,内存数据对于CPU和GPU完全可见,数据无需在CPU和GPU之间搬迁,大大节省系统资源。对于程序员,这种设计可显著降低异构应用的编程难度。以OpenCL编程为例,程序员可以在不同设备间传递指针而不是数据,这就可以将更多传统上由CPU处理的数据结构放到GPU上处理。CPU和GPU统一的内存模型,也使得OpenMP/Java这类共享内存模型的编程语言成为HSA的编程语言,从根本上解决异构应用编写困难的局面。
事实上,目前包括英特尔、英伟达等多家厂商都在提供异构计算的产品,并应用了不同的技术方案。为更好地推广HSA,AMD正在推动将HSA架构变成开放标准,与其他处理器公司共同推动异构计算的生态环境。HSA最终会落到硬件层面上,这意味着厂商都可以拿这个规范去设计他们的硬件。AMD的思路是自己的IP优势。我们的差异化体现在我们制造芯片的知识产权上面,比如AMD异构芯片的电源管理,芯片模块化设计从而提供更多HSA兼容的芯片模块,异构芯片间Cache处理能力、GPU架构等等。
在高性能计算领域,HSA则有更广泛的空间。服务器里有很多计算密集型的任务,例如高性能计算当中就有很多数据处理会变成矩阵乘法操作,这种任务对计算性能要求很高,在经过一定计算之后会返回结果,并需要一个决策过程,如此反复再进行下一个处理。CPU非常适合做决策,但GPU则非常适合大型矩阵操作。HSA将CPU和GPU进行了高效连接,这种在架构上的调整让调度无需考虑数据所在(是在CPU还是GPU上),也无需考虑处理过程(在决策还是在计算),使HSA不但适用于终端设备,也是服务器和高性能计算非常好的技术实现方式。
好文章,需要你的鼓励
本文探讨了达成人工通用智能(AGI)七大路线中的线性进阶路径,预测了从2025年至2040年 AI 技术与社会效应的关键年度节点。
这项研究介绍了一种新型多模态扩散模型,能够同时生成量子电路的离散结构和连续参数。由因斯布鲁克大学和NVIDIA公司研究人员开发,该模型利用两个独立但协同工作的扩散过程处理门类型选择和参数预测,克服了传统量子电路编译方法的效率瓶颈。研究证明了该模型在不同量子比特数量、电路深度和参数化门比例下的有效性,并通过快速电路生成创建了数据集,从中提取出有价值的结构见解,为量子电路合成提供了新方向。
SenseFlow是香港科技大学等机构联合开发的文本到图像蒸馏技术,解决了大型流匹配模型蒸馏的三大难题。研究团队提出隐式分布对齐(IDA)稳定训练过程,段内引导(ISG)优化时间步重要性分配,并设计基于视觉基础模型的判别器提升生成质量。实验表明,SenseFlow能将SD 3.5和FLUX等12B参数级模型成功蒸馏为仅需4步生成的高效版本,同时保持甚至超越原模型在多项指标上的表现,代表了AI图像生成效率提升的重要突破。
MASKSEARCH是阿里巴巴集团同义实验室开发的新型预训练框架,通过创新的"检索增强掩码预测"任务,训练大型语言模型像人类一样主动使用搜索工具获取信息。这项框架包含两个阶段:首先在掩码预测任务上预训练,然后在下游任务上微调,大幅提升模型在开放域问答中的表现。研究采用监督微调和强化学习两种方法,结合多代理系统和课程学习策略,使AI能够自主分解问题、使用搜索工具并基于搜索结果进行推理。