对英特尔公司来说,现在似乎正是放弃代工业务的最佳时机。
尽管前任CEO Pat Gelsinger就先进半导体制造业务提出了令人信服的理由,但他的愿景从起步之初就存在缺陷。英特尔的代工业务就如同十年之前IBM公司的微电子业务一样,属于纯粹的负价值资产。但与此同时,维持这项负资产对于美国而言又属于在AI半导体竞赛当中保持竞争优势的战略之选,绝对不可动摇。如果当初经济危机下的金融机构有着大而不能倒的属性,那么英特尔的代工设施对于美国国家利益也是同样关键的基础能力且意义重大。
因此对于Intel Foundry Services(简称IFS)代工业务,以下几个核心问题必须找到答案:
本文将通过分析概述一项大胆计划,即拆分英特尔的代工业务,并依靠其他科技巨头、私募股权以及政府资金等多个利益相关方的投资,并与台积电或三星电子等行业领导者间建立起战略合作伙伴关系——这是因为目前只有台积电或三星拥有设计、建造以及运营现代代工设施,并在合理时间之内实现盈利所必需的专业知识。
之所以做出拆分英特尔代工业务的决定,主要基于以下严酷的经济现实:
英特尔的x86业务是其晶圆产能的核心驱动力,但已经长期处于衰退状态。相比之下,台积电主导的Arm处理器至少拥有十倍于前者的晶圆需求量级。英特尔缺乏在先进半导体制造业维持生存的必要规模。
根据赖特定律,随着累计产量的增加,制造成本也会随之下降。英特尔的晶圆产量较低,导致制造成本最多比台积电高出30%至35%。除此之外,英特尔在各个新的制程节点上实现有竞争力的产量方面也比台积电落后约一年。
英特尔的代工业务正在大量吞噬现金。截至今年4月,该公司报告称在190亿美元的收入之下 ,其运营亏损已经高达70亿美元,收入也同比下降31%。这样的财务状况根本无法持续。
随着制程节点变得越来越昂贵(例如,2纳米制程的晶圆单片价格已高达2.5万美元),英特尔的市场竞争力表现正在减弱。如果不加以干预,代工设施将继续拖累英特尔的整体业务,导致其他本应具有巨大发展潜力的业务分支被其榨干。
在美国本土维持半导体制造能力,对于国家安全及经济韧性至关重要。
必须坚持由总部位于美国的实体对关键知识产权的控制力,由此减轻地缘政治引发的风险。
英特尔董事会必须意识到其代工业务的负面价值并果断采取以下行动:
与台积电(或三星)合作,利用对方在先进半导体制造业方面的专业知识。
从美国各科技巨头(包括Alphabet、亚马逊、苹果、Meta Platform、微软以及英伟达等)以及CHIPS芯片法案及私募股权公司/公共基金处获取投资。我们认为埃隆·马斯克也应参与此项计划。
将为英特尔预留的80亿至100亿美元重新分配给多家利益相关合资企业,以确保美国先进半导体制造产业的长期可持续性。同时对其余部分的CHIPS芯片法案资金也应做重新统筹与划拨。
成功拆分英特尔代工业务,离不开各家不同利益相关方的协同贡献,具体如下表所示:
备注:苹果、Alphabet、亚马逊、微软、Meta以及英伟达目前资产负债表上的现金加流动证券的总金额超过5000亿美元。
英特尔的代工业务对于这样一家净资产为负的公司来说已成一项关键、但不具备可持续性的业务。理想的解决方案并非直接放弃,而是通过协作方式对其加以改造。由各科技巨头、私募股权及美国政府战略投资共同支持的拆分实体,将创造出一股具备市场竞争力的独立半导体制造力量,维护美国在半导体领域的先进地位。
这样一家合资企业还须以联手台积电(或者三星电子)作为运营基础,借此确保获取成功所需的专业知识,同时减轻英特尔的财务负担。这条道路不仅有助于挽救重要国家资产,同时也符合更广泛的行业以及地缘政治需求。如果不果断采取行动,英特尔将面临破产风险,且最终也无法实现美国在半导体领域保持领先的愿景——这方面风险绝对不容忽视。
好文章,需要你的鼓励
这份由MIT NANDA项目团队完成的研究报告揭示了企业AI应用的真实现状。报告基于对52家企业的深度访谈、300多个公开AI项目的分析以及153位高管的问卷反馈,发现尽管企业在生成式AI上投入了300-400亿美元,但95%的组织没有看到任何投资回报。只有5%的企业成功跨越了"GenAI鸿沟",创造了实际价值。
南京大学团队开发了名为DiP的AI图像生成系统,突破了传统方法在质量与效率间的平衡难题。该系统采用"先整体后局部"策略,通过扩散变换器构建图像整体结构,再用轻量级补丁细节头添加精致细节。在ImageNet测试中,DiP获得1.79的最佳FID分数,同时推理速度比前代像素级方法快10倍以上,为AI绘画技术带来重要突破。
阿里通义实验室的研究团队通过精巧的数学分析,首次揭示了AI快速图像生成技术的真实工作机制。他们发现原本被认为起主导作用的"分布匹配"实际上只是稳定器,而被忽视的"CFG增强"才是核心驱动力。基于这一发现,团队提出了解耦调度策略,为两个机制制定专门的工作计划,显著提升了图像生成质量和速度,该方法已被知名Z-Image项目成功采用。