在2024年IEEE国际电子器件会议(IEDM 2024)上,英特尔代工展示了多项技术突破,助力推动半导体行业在下一个十年及更长远的发展。具体而言,在新材料方面,减成法钌互连技术(subtractive Ruthenium)最高可将线间电容降低25%,有助于改善芯片内互连。英特尔代工还率先汇报了一种用于先进封装的异构集成解决方案,能够将吞吐量提升高达100倍,实现超快速的芯片间封装(chip-to-chip assembly)。此外,为了进一步推动全环绕栅极(GAA)的微缩,英特尔代工展示了硅基RibbionFET CMOS (互补金属氧化物半导体)技术,以及用于微缩的2D场效应晶体管(2D FETs)的栅氧化层(gate oxide)模块,以提高设备性能。
随着行业朝着到2030年在单个芯片上实现一万亿个晶体管的目标前进,晶体管和互连微缩技术的突破以及未来的先进封装能力正变得非常关键,以满足人们对能效更高、性能更强且成本效益更高的计算应用(如AI)的需求。
我们还需要探索新型的材料,来增强英特尔代工的PowerVia背面供电技术在缓解互连瓶颈,实现晶体管的进一步微缩中的作用。这对于持续推进摩尔定律、推动面向AI时代的半导体创新至关重要。
英特尔代工已经探索出数条路径,以解决采用铜材料的晶体管在开发未来制程节点时可预见的互连微缩限制,改进现有封装技术,并继续为GAA及其它相关技术定义和规划晶体管路线图:
在300毫米GaN(氮化镓)技术方面,英特尔代工也在继续推进其开拓性的研究。GaN是一种新兴的用于功率器件和射频(RF)器件的材料,相较于硅,它的性能更强,也能承受更高的电压和温度。在300毫米GaN-on-TRSOI(富陷阱绝缘体上硅)衬底(substrate)上,英特尔代工制造了业界领先的高性能微缩增强型GaN MOSHEMT(金属氧化物半导体高电子迁移率晶体管)。GaN-on-TRSOI等工艺上较为先进的衬底,可以通过减少信号损失,提高信号线性度和基于衬底背部处理的先进集成方案,为功率器件和射频器件等应用带来更强的性能。
此外,在IEDM 2024上,英特尔代工还分享了对先进封装和晶体管微缩技术未来发展的愿景,以满足包括AI在内的各类应用需求,以下三个关键的创新着力点将有助于AI在未来十年朝着能效更高的方向发展:
同时,英特尔代工还发出了行动号召,开发关键性和突破性的创新,持续推进晶体管微缩,推动实现“万亿晶体管时代”。英特尔代工概述了对能够在超低电压(低于300毫伏)下运行的晶体管的研发,将如何有助于解决日益严重的热瓶颈,并大幅改善功耗和散热。
好文章,需要你的鼓励
本文探讨了如何利用混合智能来超越传统的多元化、公平性和包容性(DEI)议程。作者指出,当前的DEI计划可能加剧分歧,而混合智能则提供了一个统一的框架,强调人类共同的基本维度。文章提出了一个2x4模型,包括4个个人维度和4个集体维度,以此来理解人类经验的普遍性。通过将人工智能与这种自然智能模型相结合,组织可以创造更包容、更有效的工作环境。}
这篇文章介绍了AI芯片初创公司EnCharge的创新技术,该公司声称其模拟人工智能加速器在功耗上仅需传统桌面GPU的一小部分,却能提供相当的计算性能。EnCharge的推理芯片在8位精度下能以1瓦特的功耗提供150 TOPS的AI计算能力。该技术经过多年的研发,旨在通过在内存中进行计算来提高效率,并支持多种AI工作负载。
微软发布了 Majorana 1 量子芯片,这是一个重大突破。该芯片采用拓扑量子比特技术,具有更低的错误率,有望解决量子计算的可扩展性问题。这项技术是微软近 20 年研究的成果,标志着量子硬件取得重要进展,为构建大规模量子计算机铺平了道路。
xAI公司推出的Grok 3模型在各项关键基准测试中表现出色,匹敌或超越了目前最先进的AI模型。尽管训练尚未完成,Grok 3已展现出强大实力。本文探讨了Grok 3可能对AI行业产生的影响,包括加速模型发布周期、验证大规模计算投资的价值,以及推动开源文化的发展等方面。