在2024年IEEE国际电子器件会议(IEDM 2024)上,英特尔代工展示了多项技术突破,助力推动半导体行业在下一个十年及更长远的发展。具体而言,在新材料方面,减成法钌互连技术(subtractive Ruthenium)最高可将线间电容降低25%,有助于改善芯片内互连。英特尔代工还率先汇报了一种用于先进封装的异构集成解决方案,能够将吞吐量提升高达100倍,实现超快速的芯片间封装(chip-to-chip assembly)。此外,为了进一步推动全环绕栅极(GAA)的微缩,英特尔代工展示了硅基RibbionFET CMOS (互补金属氧化物半导体)技术,以及用于微缩的2D场效应晶体管(2D FETs)的栅氧化层(gate oxide)模块,以提高设备性能。
随着行业朝着到2030年在单个芯片上实现一万亿个晶体管的目标前进,晶体管和互连微缩技术的突破以及未来的先进封装能力正变得非常关键,以满足人们对能效更高、性能更强且成本效益更高的计算应用(如AI)的需求。
我们还需要探索新型的材料,来增强英特尔代工的PowerVia背面供电技术在缓解互连瓶颈,实现晶体管的进一步微缩中的作用。这对于持续推进摩尔定律、推动面向AI时代的半导体创新至关重要。
英特尔代工已经探索出数条路径,以解决采用铜材料的晶体管在开发未来制程节点时可预见的互连微缩限制,改进现有封装技术,并继续为GAA及其它相关技术定义和规划晶体管路线图:
在300毫米GaN(氮化镓)技术方面,英特尔代工也在继续推进其开拓性的研究。GaN是一种新兴的用于功率器件和射频(RF)器件的材料,相较于硅,它的性能更强,也能承受更高的电压和温度。在300毫米GaN-on-TRSOI(富陷阱绝缘体上硅)衬底(substrate)上,英特尔代工制造了业界领先的高性能微缩增强型GaN MOSHEMT(金属氧化物半导体高电子迁移率晶体管)。GaN-on-TRSOI等工艺上较为先进的衬底,可以通过减少信号损失,提高信号线性度和基于衬底背部处理的先进集成方案,为功率器件和射频器件等应用带来更强的性能。
此外,在IEDM 2024上,英特尔代工还分享了对先进封装和晶体管微缩技术未来发展的愿景,以满足包括AI在内的各类应用需求,以下三个关键的创新着力点将有助于AI在未来十年朝着能效更高的方向发展:
同时,英特尔代工还发出了行动号召,开发关键性和突破性的创新,持续推进晶体管微缩,推动实现“万亿晶体管时代”。英特尔代工概述了对能够在超低电压(低于300毫伏)下运行的晶体管的研发,将如何有助于解决日益严重的热瓶颈,并大幅改善功耗和散热。
好文章,需要你的鼓励
人工智能领域正在通过改进模型工作方式来释放新功能。研究人员开发了一种名为"SVDquant"的4位量化系统,可以使扩散模型运行速度提高3倍,同时提升图像质量和兼容性。这种技术通过压缩参数和激活值来大幅降低内存和处理需求,为资源受限的系统带来新的可能性。
Meta公司开发了一种机器学习模型SEAMLESSM4T,能够实现36种语言之间的近即时语音翻译。该模型采用创新方法,利用互联网音频片段避免了繁琐的数据标注。这一突破性技术有望简化多语言交流,但仍需解决噪音环境、口音等挑战,并关注技术可能带来的偏见问题。
生物制药行业正积极拥抱人工智能技术,大型企业投入巨资,小型公司谨慎布局。行业面临人才、数据和工作流程等挑战,但预计到2025年将在AI就绪度方面取得实质性进展。AI有望加速药物研发,提高效率,最终造福患者,重塑医疗保健的未来。
随着 AI 需求激增,数据中心行业面临严峻挑战。能源消耗激增威胁可持续发展目标,新项目遭遇公众反对。电力供应和分配方式亟需改革,行业或将迎来动荡的 2025 年。