英特尔在《自然》杂志上发表的研究展示了单电子控制下高保真度和均匀性的量子比特。
英特尔在《自然》杂志发表题为《检测300毫米自旋量子比特晶圆上的单电子器件》的研究论文,展示了领先的自旋量子比特均匀性、保真度和测量数据。这项研究为硅基量子处理器的量产和持续扩展(构建容错量子计算机的必要条件)奠定了基础。

英特尔打造的300毫米自旋量子比特晶圆
英特尔的量子硬件研究人员开发了一种300毫米低温检测工艺,使用互补金属氧化物半导体(CMOS)制造技术,在整个晶圆上收集有关自旋量子比特器件性能的大量数据。
量子比特器件良率的提升,加上高通量的测试工艺,让英特尔的研究人员能够根据更多的数据分析均匀性,这是扩展量子计算机的重要一步。研究人员还发现,这些晶圆上的单电子器件在作为自旋量子比特运行时表现良好,门保真度达到了99.9%。就完全基于CMOS工艺制造的量子比特而言,这一保真度设立了业界领先水平。
自旋量子比特的尺寸较小,直径约为100纳米,因此密度高于其它类型的量子比特(如超导量子比特),从而能够在相同尺寸的芯片上构建更复杂的量子处理器。英特尔使用了极紫外光刻(EUV)技术实现小尺寸自旋量子比特芯片的大批量制造。
用数百万个均匀的量子比特实现容错量子计算机,需要高度可靠的制造工艺。凭借在晶体管制造领域丰富的专业积累,英特尔走在行业前沿,利用先进的300毫米CMOS制造技术打造硅自旋量子比特。300毫米CMOS制造技术通常能够在单个芯片上集成数十亿个晶体管。
在这些研究成果的基础上,英特尔希望继续取得进展,使用这些技术添加更多互连层,以制造具有更高量子比特数和更多连接的2D阵列,并在工业制造流程中实现高保真的双量子比特门(2-qubit gates)。在量子计算领域,英特尔未来的工作重点是通过下一代量子芯片继续扩展量子器件和实现性能提升。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。