我们最新的研究成果和详尽的材料测试有望提升电动汽车电池的制造效率、可靠性和环境可持续性
新加坡(2024年5月8日)——移动电气化解决方案合作伙伴ENNOVI推出了一种创新的电池互连系统(CCS)层压方法。ENNOVI通过测试多家供应商提供的聚对苯二甲酸乙二酯(PET)绝缘膜模和胶粘剂,检验其粘合强度、耐用性和环境影响。得益于此,ENNOVI建立了一个可以推荐最有效材料组合的数据库,淘汰了行业长期以来一直盛行的试错法。
传统上,在电池电芯上组装CCS需要采用繁琐的工序,包括使用模制塑料托盘进行定位。这些工序虽然能有效定位电芯和铜巴片/铝巴片,但随着模块尺寸的增加,也导致产品增加了不必要的重量和复杂性。认识到传统工序的局限性,ENNOVI率先采用了热层压和冷层压工艺,无需塑料托盘,即可通过使用推荐的层压材料组合,为原始设备制造商和一级供应商提供更简化、更灵活的解决方案。
“我们目前已转向采用层压工艺,这标志着我们在精确定位电芯巴片方面的能力实现了重大飞跃,不再受限于传统方法的机械限制”,ENNOVI能源系统产品经理Till Wagner解释道,“通过建立一个已预检测PET箔和胶粘剂的数据库,我们提高了CCS设计速度并简化了组装过程,从而为节约材料和能源开辟了新的可能性”。
ENNOVI层压技术的进步具有深远的影响。我们掌握热层压或冷层压工艺,在市场上独具优势,可以帮助全球原始设备制造商和一级供应商提高灵活性和效率。通过优化PET箔和胶粘剂的选择范围,ENNOVI正在提高电动汽车电池模块的结构完整性和使用寿命,缩短制造周期,以及降低环境影响。
随着电动汽车行业朝着更可持续、更高效的生产方式发展,ENNOVI的创新技术将引领新一代电动车电池模块的设计和组装。ENNOVI专注于减少或消除对胶粘剂的需求,从而解决了客户对电池寿命、环境影响和制造效率的担忧。“我们的目标是超越传统胶粘剂,利用前沿技术实现更牢固、更可持续的粘合”Wagner说道。
 0赞
0赞好文章,需要你的鼓励
 推荐文章
                    推荐文章
                  虽然ChatGPT等AI工具正在快速改变世界,但它们并非无所不知的神谕。ChatGPT擅长"令人信服的错误",经常提供有偏见、过时或完全错误的答案。在健康诊断、心理健康、紧急安全决策、个人财务规划、机密数据处理、违法行为、学术作弊、实时信息监控、赌博预测、法律文件起草和艺术创作等11个关键领域,用户应避免完全依赖ChatGPT,而应寻求专业人士帮助。
Meta超级智能实验室联合佐治亚理工学院开发出RECAP训练方法,通过故意给AI模型误导性开头来训练其纠错能力。该方法显著提升了大语言模型的安全性(12.3%)、抗攻击能力(21.0%)和推理质量,同时减少过度拒绝问题。RECAP无需额外计算资源,能让AI模型学会自我反思和批判性思维,为构建更可信的AI系统提供了新思路。
微软重启三里岛核反应堆的协议确认了AI革命与能源现实主义的融合。亚马逊和谷歌也达成类似协议,共同押注核能为AI未来提供最可行的动力路径。到2030年代,数据中心用电量可能媲美大国水平。国际能源署预测全球电力需求到2050年将增长六倍。核电厂90%的容量因子使其独特适合数据中心需求。世界核协会估计,当前全球398GW核能产能必须在2050年前至少增长两倍。
奥地利科学技术研究院团队深入研究微缩浮点数格式NVFP4和MXFP4的实际性能,发现现有量化方法效果不佳。他们开发了微旋转GPTQ算法和QuTLASS计算库,在保持模型精度的同时实现显著加速:B200芯片上达到2.2倍端到端提升,RTX5090上实现4倍加速,为AI推理优化提供了新的解决方案。
 
             
                 
                     
                     
                    