2023年数据中心物理基础设施(DCPI)行业实现了两位数的增长,克服了长期存在的、疫情引发的供应链问题,开始意识到AI热潮带来的好处。
根据Dell’Oro Group最新的数据中心物理基础设施报告,尽管数据中心物理基础设施收入增长从去年第四季度开始放缓,但收入同比增长了16%。
已履行的订单
近几个月来,AI热潮不容忽视。据Gartner称,有70%的高管表示,他们的组织正处于“利用生成式AI进行调查和探索的模式”。
然而有趣的是,尽管很多人认为数据中心物理基础设施市场的快速增长是由生成式AI的爆炸式增长推动的,但Dell'Oro研究总监Lucas Beran表示,这种增长主要是供应商履行了疫情期间由于供应链限制而延迟的“积压订单”导致的结果。
Beran指出,尽管2023年数据中心物理基础设施的增长包括与AI工作负载相关的销售带来的“边际贡献”,但真正影响还有待观察。
他表示:“这是因为建设新的数据中心设施通常需要18-24个月的时间,而支持AI工作负载的新专用设施预计将在2024年下半年开始投入实际使用。”
需求激增
今年二月,JLL数据中心市场董事总经理Andy Cvengros指出,随着北美数据中心需求的飙升,二级市场正在取得进展。
这位分析师表示,数据中心用户在寻求更多的电力和更多的土地,这迫使他们在IT战略中进一步规划考虑新的区域,“致力于加快时间安排空间和电力,以找到满足其需求的数据中心容量。”
然而,这可能会成为未来增长的最大挑战。
最近在由Data Center Knowledge主办的网络研讨会上,数据中心的电力容量问题成为Critical Facility Group负责人Christopher McLean关注的焦点。他指出,AI带来的迅猛增长意味着这个行业将需要采取上述所有策略来满足前所未有的电力需求。
正如美国佐治亚州公共服务委员会主席Jason Shaw对《华盛顿邮报》表示,这种增长已经让能源行业措手不及。“这让你摸不着头脑,想知道我们是如何陷入这种境地的。怎么和预测相差这么远?这给我们带来了前所未有的挑战。”
对数据的渴望
数据中心容量方面的挑战不仅限于电力。正如美国加州大学河滨分校的一组研究人员最近发表的一篇论文所强调的,生成式AI也是需求很大的。
根据Shaolei Ren博士的研究,估计“ChatGPT”需要“喝”一瓶500毫升的水才能进行大约20-50个问题和答案的简单对话。
针对这些问题和答案对ChatGPT进行训练,总计要消耗西得梅因水域6%的水。他的团队估计,到2022年美国数据中心的取水量将达到15亿立方米,约占美国年取水总量的0.33%,大约是丹麦国家取水量的2倍。他们预计,到2027年数据中心的耗水量将再次翻倍。
新部署
然而,很多人正在寻找方法降低对电力和水的需求,例如美国能源部的COOLERCHIPS计划、微软投资核聚变、或者谷歌调整高峰时段的用电量。
Dell’Oro Group的Beren表示:“有证据表明这些部署即将到来。数据中心热管理领域的市场份额领先者Vertiv在第一季度实现了液体冷却部署,引人关注……这只是一个开始,因为Vertiv计划在2024年将把液体冷却制造能力提高45倍。”
根据Dell’Oro Group的预测,全球数据中心物理基础设施市场将“在2024年上半年呈现温和增长,但随着与AI工作负载相关的物理基础设施部署增加,下半年将加速增长”。
此外,在Dell'Oro Group的2023年第四季度报告中,北美、亚太地区(不包括中国)、欧洲、中东和非洲(EMEA)的数据中心物理基础设施市场在2023年第四季度实现了两位数的增长,而加勒比地区和拉丁美洲(CALA)的收入增幅则要低得多。中国是唯一出现下滑的市场地区。
好文章,需要你的鼓励
Luminary Cloud宣布完成7200万美元B轮融资,专注开发"物理AI"技术。该公司云原生平台可将仿真速度提升100倍,利用物理信息模型实时预测汽车、飞机等产品性能。公司推出针对特定行业的预训练模型,包括与本田合作的汽车设计模型和与Otto航空合作的飞机开发模型。融资由西门子风投领投,将用于扩大研发团队和市场销售。
香港中文大学联合上海AI实验室推出Dispider系统,首次实现AI视频"边看边聊"能力。通过创新的三分式架构设计,将感知、决策、反应功能独立分离,让AI能像人类一样在观看视频过程中进行实时交流,在StreamingBench测试中显著超越现有系统,为教育、娱乐、医疗、安防等领域的视频AI应用开启新可能。
伦敦量子动态科技公司宣布交付业界首台采用传统半导体制造工艺的量子计算机。该系统已安装在英国国家量子计算中心,使用标准化300毫米硅晶圆,是首台自旋量子比特计算机。系统采用CMOS技术,占地约三个19英寸服务器机架,具备数据中心友好特性。公司开发的可扩展瓦片架构支持大规模生产,未来可扩展至每个量子处理单元数百万量子比特,为商业化应用奠定基础。
Atla公司发布Selene Mini,这是一个仅有80亿参数的AI评估模型,却在11个基准测试中全面超越GPT-4o-mini。通过精心的数据筛选和创新训练策略,该模型不仅能准确评判文本质量,还能在医疗、金融等专业领域表现出色。研究团队将模型完全开源,为AI评估技术的普及和发展做出贡献。