第五代至强可扩展处理器的最新MLPerf测试结果充分展示了英特尔及其生态合作伙伴在提升生成式AI性能方面的成果。
近日,MLCommons公布了针对AI推理的MLPerf v4.0基准测试结果。其中,内置了英特尔®高级矩阵扩展(英特尔® AMX)的第五代英特尔®至强®可扩展处理器(以下简称“第五代至强”)在测试中表现优异,进一步彰显了英特尔致力于通过丰富且具有竞争力的解决方案推动 “AI无处不在”的承诺。截至目前,英特尔仍是唯一一家提交MLPerf测试结果的CPU厂商。与第四代至强在MLPerf推理v3.1基准测试中的结果相比,第五代至强的测试结果平均提升1.42倍。
英特尔公司副总裁兼数据中心与人工智能事业部产品管理总经理Zane Ball表示:“我们将持续提升CPU和加速器等广泛产品组合在行业基准测试中的AI性能。此次全新的MLCommons结果显示,我们提供的AI解决方案能够满足客户不断变化、多样化的AI需求。同时,至强处理器也为客户提供了可快速实现AI部署,且极具性价比的选择。”
英特尔产品迄今为止在多轮MLPerf基准测试中均所展示出领先的训练及推理性能,该测试结果亦为客户树立了可用于评估产品AI性能的行业标准。
关于第五代至强的测试结果:
与第四代至强在MLPerf推理v3.1性能基准测试中的表现相比,经由硬件及软件优化的第五代至强性能平均提升1.42倍。其中,针对具备连续批处理(continuous batching)等软件优化的GPT-J模型,与v3.1的测试结果相比,第五代至强的性能提升约1.8倍;同样,得益于MergedEmbeddingBag以及基于英特尔AMX的其他优化,DLRMv2的测试结果显示出约1.8倍的性能提升和99.9的准确率。
第五代英特尔®至强®可扩展处理器
与此同时,英特尔非常自豪地与包括思科、戴尔、广达、Supermicro和纬颖科技在内的广大OEM伙伴们展开合作,助力其提交基于自身产品的MLPerf测试结果。英特尔不仅于2020年开始提交基于第四代至强的测试结果,同时至强可扩展处理器亦是参与MLPerf测试的产品中,众多加速器的主机CPU。
此外,第五代至强可在英特尔®开发者云平台上进行评估。该环境中,用户可以进行小型及大规模AI训练(譬如大语言模型或生成式AI)、运行大规模的推理工作负载,以及管理AI计算资源等。
说明:工作负载及相关配置说明,请查看MLCommons网页。结果可能不同。
好文章,需要你的鼓励
Anthropic发布了面向成本敏感用户的Claude Haiku 4.5大语言模型,定价为每百万输入令牌1美元,输出令牌5美元,比旗舰版Sonnet 4.5便宜三倍。该模型采用混合推理架构,可根据需求调整计算资源,支持多模态输入最多20万令牌。在八项基准测试中,性能仅比Sonnet 4.5低不到10%,但在编程和数学任务上超越了前代Sonnet 4。模型响应速度比Sonnet 4快两倍以上,适用于客服聊天机器人等低延迟应用场景。
上海AI实验室联合多家顶尖机构开发出全球首个科学推理大模型SciReasoner,该模型在2060亿科学数据上训练,支持103个科学任务,能够像科学家一样进行逻辑推理并展示思考过程。它实现了化学、生物学、材料科学等多领域知识整合,在分子设计、性质预测、文献分析等方面表现出色,为科学研究提供了强大的AI助手工具。
英国初创公司Nscale将为微软建设四个AI数据中心,总计部署约20万个GPU,合同价值高达240亿美元。首个数据中心将于明年在葡萄牙开建,配备1.26万个GPU。德州数据中心规模最大,将部署10.4万个GPU,容量从240兆瓦扩展至1.2吉瓦。所有设施将采用英伟达最新Blackwell Ultra显卡。
南洋理工大学研究团队开发出SHINE方法,这是一种无需额外训练就能实现高质量图像合成的新技术。该方法通过巧妙引导现有AI模型的潜能,能够在复杂光影条件下完美合成图像,包括准确的阴影生成和水面倒影效果。研究团队还创建了ComplexCompo基准测试集,验证了SHINE在各种挑战性场景中的卓越性能,为图像编辑技术的发展开辟了新方向。