近日,为了更好地满足客户在AI业务场景下的需要,UCloud优刻得镜像市场上线支持了Milvus向量数据库镜像。
随着时代发展,文档资料、图片、语音、视频影像等非结构化数据开始海量涌现。为了能够更好地使用这些数据,可以使用embedding将它们转换为向量,并将这些向量存储到向量数据库中,建立索引方便检索。检索时通过计算两个向量的相似度来分析它们之间的相关性。如果两个向量非常相似,则表示原始数据源也非常相似,从而找到目标数据。
利用这样的存储和检索的能力,在大语言模型(LLM)的技术架构中,向量数据库可以作为一个持久性的记忆体,满足对私有知识库文档和数据的存储管理、保存大模型的处理结果、保存AI智能体产生的新知识和交互上下文等需求,并在模型需要时随时快速调用,提高模型结果输出的准确性和效率。
此次UCloud镜像市场新增支持的Milvus,正是一款在Github上拥有两万多星的开源向量数据库,专门为向量的快速查询检索而设计,能够对万亿规模的向量数据创建索引。Milvus具备高性能、高可扩展性等特点,数据可持久化存储在本地或者支持s3协议的对象存储,且支持数据分区;除了向量,Milvus还支持布尔值、整数、浮点数等数据类型,可以更好地存储表达业务数据的特性;Milvus还将标量过滤和向量相似度搜索相结合,支持混合查询的能力;同时,Milvus还支持多种开发语言SDK,有丰富的周边配套工具。
目前UCloud镜像市场提供的Milvus向量数据库是Standalone版本,只需4个步骤,即可通过云主机镜像快速获得向量数据库能力。
1、登录UCloud控制台
(https://console.ucloud.cn/uhost/uhost/create)
2、选择快杰O型云主机,推荐配置8核CPU、16G内存、系统盘不低于100G
3、在镜像市场选择“向量数据库Milvus”镜像
4、立即创建,开机后系统将自动启动Milvus向量数据库。同时,云主机内还预装了milvus_cli客户端工具,可以直接访问
连接访问Milvus以及数据操作的更多使用细节可参考官方文档:
https://milvus.io/docs/manage_connection.md
如若向量数据库所需要的CPU/内存/硬盘需要扩展,可以通过云主机的改配功能,数秒内即可完成升级。
UCloud优刻得在云主机镜像市场中发布的向量数据库镜像,旨在为AI业务场景的客户提供技术架构中所需要的一个重要拼图,尤其是在图片/语音/视频检索、文本检索、NLP语言问答等业务场景中,向量数据库可以很好的应用。同时,该向量数据库还可以与不久前镜像市场发布的大模型镜像相结合,形成更完整的解决方案,满足业务技术架构需要。
好文章,需要你的鼓励
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AI虽具备变革企业洞察力的潜力,但成功依赖于数据质量。大多数AI项目失败源于数据混乱分散而非算法局限。谷歌BigQuery云数据AI平台打破数据孤岛,简化治理,加速企业AI应用。通过AI自动化数据处理,实现实时分析,并与Vertex AI深度集成,使企业能够高效处理结构化和非结构化数据,将智能商业转型从愿景变为现实。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。