作者:Gartner研究总监 李晶
Gartner研究报告2023重要战略技术趋势:行业云平台介绍了行业云平台(ICP)推动实现行业相关业务成果的方式:将软件即服务(SaaS)、平台即服务(PaaS)和基础设施即服务(IaaS)与现有以及新型解决方案的组装式模块相结合(见图1)。组装式功能允许客户对ICP以“即服务”形式交付的行业定制功能进行重新组合。
图1:行业云平台演进
![]() |
中国的“十四五”规划强调云采用,推动了一些云服务提供商或关键行业参与者为同行企业机构创建共享基础设施池(也称为社区云)。然而,一些社区云仍然采用与企业数据中心相同的方式运行应用,并且几乎不利用SaaS,因此缺乏灵活性和创新性,引发了用户的不满。灵活性和创新性的缺乏,也导致其他供应商将IaaS、PaaS和SaaS集成到一个整体云平台中,通过这种ICP部署方式来重复使用现有IT系统并为之赋能。
中国的基础设施和运营(I&O)领导者必须认识到,采用ICP可能会影响其云端I&O运营模式及其本地I&O服务战略。中国企业机构的I&O部门需要评估ICP的关键特性,采取最佳方式应对团队角色和整体战略的变化。
ICP将I&O的角色从技术提供商转变为行业平台赋能者和创新推动者
在非ICP环境中,I&O服务是根据整体业务需求形成的技术要求来设置和交付的,这样可以确保业务部门能够访问应用服务,实现预期结果。与此形成对比的是,在预集成IaaS的业务成果驱动型ICP环境中,业务团队和I&O团队需要协作,以满足企业机构的需求。
I&O领导者应认识到,传统的本地I&O服务仅可支持作为整体业务需求组成部分的技术需求,而ICP集成的本地I&O服务则侧重能够满足和交付整体业务需求和成果。因此,现有I&O服务构建的“三步走”方法论,即“计划-构建-运行”方法,由于没有围绕着业务成果去设计和落地相关服务,因此无法将构建好的相关I&O服务专注于交付业务成果,而利用设计思维则可以推动以业务成果为中心的I&O服务建设。
图2:典型的设计思维流程

此外,ICP的业务创新也使I&O团队和服务的角色发生改变,从管理业务应用服务的“最后手段”转变为能够重塑业务的创新推动者。
ICP之所以与众不同,是因为它是一种涵盖了IaaS、PaaS和SaaS的业务导向型一站式解决方案,能够利用技术创新重塑业务。在这一架构下,I&O团队在从基础设施层推动业务创新方面发挥着关键作用,不仅在ICP产品的IaaS中,而且在连接业务和ICP平台的I&O服务中亦是如此。
ICP需要组装式本地I&O服务,以实现无缝集成
采用ICP的第二个影响是在架构上重新构建集成到ICP中的本地I&O服务,使其成为可组装式服务。I&O领导者应认识到,基础设施服务的部署与应用服务的部署息息相关。多数ICP为构建应用提供组装式功能。因此,集成到ICP中的本地I&O服务也需要具备可组装性,以便能够灵活地应对不断变化的业务需求。
图3:可组装性的三个原则

在IT基础设施领域,可组装性并非新概念。个人电脑(PC)就是大多数I&O领导者使用过的典型可组装性原型设备,包含三个标准组件:显示器,由中央处理器(CPU)、内存和主板构成的主机箱,鼠标和键盘。这三个组件满足第一个可组装性原则:模块化。许多中国I&O领导者在获取他个人的第一台PC时会倾向于自行组装(DIY)。为此,通常应关注三个关键问题:需要使用哪些组件,从何处购买这些组件,如何将组件组装成最终需要的PC。这些要素满足第二个可组装性原则:架构化。最后,在自行组装PC时,设想的使用场景(例如音乐播放、图形设计、游戏)满足可组装性的第三项原则:情境化。
I&O领导者应认识到,云计算的发展在改变I&O领域的可组装性。云计算的用途与PC不同,但两者都以可组装性的概念为基础。为成功构建组装式I&O服务,I&O领导者应参考组装式业务框架,因为二者的目标类似,即快速响应不断变化的业务需求。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。