开源设计简化了用于医疗、制造、零售和其它行业解决方案的AI开发
英特尔正式推出了首套开源AI参考套件,旨在让企业能够在本地、云端和边缘环境中都更易于部署AI。这些在英特尔On产业创新峰会(Intel Vision)上率先公布的参考套件包括AI模型代码、端到端机器学习管道说明、库和用于跨架构运行的英特尔oneAPI组件,让数据科学家和开发者能够学习如何更快速、更简单地在医疗、制造、零售和其他行业部署准确性更高、性能更优和总落地成本更低的AI。
英特尔副总裁兼人工智能和分析部门总经理李炜博士表示:“在开放和众创的环境中,创新才能蓬勃发展。不管是包括各种已优化的流行框架的英特尔加速开放AI软件生态,还是英特尔的AI工具,都建立在开放的、基于标准的、统一的oneAPI编程模型基础上。此次推出的参考套件是用英特尔的各项端到端AI软件产品打造而成,将让数百万的开发者和数据科学家能够轻松快捷地将AI加入应用程序,或改善现有的智能解决方案。”
随着视觉、语音、推荐系统等领域的用例出现,AI工作负载正不断增长并变得更加多样化。与埃森哲联合开发的英特尔AI参考套件旨在加速推动AI在各行业的应用。这些套件是开源的预置AI,可针对各种重要企业应用场景,支持新AI的引入和现有AI解决方案的战略调整。
本次英特尔将推出四款套件供下载:
这些AI参考套件可在英特尔官网的AI参考套件页面或Github上免费下载。
开发者希望能将AI加入其解决方案,英特尔此次发布的AI参考套件则有助于这一目标的实现。这些套件建立在英特尔端到端工具和框架优化AI软件的基础上,并完善了这一产品组合。基于oneAPI开放的、基于标准的、异构的,可在多种架构上运行的编程模型开发,这些工具能克服专有环境限制,帮助数据科学家以更快的速度和更低的成本训练模型。
未来一年,英特尔还将发布一系列新开源AI参考套件,提供各种已训练好的机器学习和深度学习模型,帮助各种规模的企业进行数字化转型。
好文章,需要你的鼓励
法国AI初创公司Mistral AI发布了首个大语言模型全面生命周期评估,量化了AI的环境代价。其Mistral Large 2模型训练产生20,400吨二氧化碳当量,消耗281,000立方米水。运营阶段占环境影响85%,远超硬件制造成本。研究表明地理位置和模型大小显著影响碳足迹,企业可通过选择适当规模模型、批处理技术和清洁能源部署来减少环境影响。这一透明度为企业AI采购决策提供了新的评估标准。
上海AI实验库推出YUME系统,用户只需输入一张图片就能创建可键盘控制的虚拟世界。该系统采用创新的运动量化技术,将复杂的三维控制简化为WASD键操作,并通过智能记忆机制实现无限长度的世界探索。系统具备强大的跨风格适应能力,不仅能处理真实场景,还能重现动漫、游戏等各种艺术风格的虚拟世界,为虚拟现实和交互娱乐领域提供了全新的技术路径。
许多人认为一旦实现通用人工智能(AGI)和人工智能超级智能(ASI),这些高度先进的AI将能够告诉我们人生的真正意义。然而,巅峰AI可能无法明确回答这个史诗般的问题。即使AI拥有人类所有知识,也不意味着能从中找到生命意义的答案。AI可能会选择提供多种可能性而非绝对答案,以避免分裂人类社会。
上海AI实验室研究团队开发了革命性的AI编程验证方法,让大语言模型能够在最小人工干预下自动生成和验证程序规范。该方法摒弃传统的人工标注训练,采用强化学习让模型在形式化语言空间中自主探索,在Dafny编程验证任务上显著超越现有方法,为AI自主学习开辟新道路。