本周微软宣布,已经在Azure云中托管了OpenAI排名第五的AI超级计算机。2019年微软向OpenAI行业研究小组投资了10亿美元。这个AI超算系统包括大约10000个GPU和285000多个CPU核心,将用于提升处理超大型AI模型的能力,据OpenAI称,大型AI模型的规模每3.5个月就会翻一番。微软用于自然语言生成的Turing模型包含约170亿个参数,比去年的最大模型增加了17倍。因此,这个超级计算机将大有用处。
奇怪的是,微软并没有命名这套计算机(这个在超算领域这是闻所未闻的),而且也没有透露任何用户必须了解的详细系统配置信息:用的哪个GPU的开发堆栈,谁家的CPU、以及每个插槽的核心数和线程数、什么网络接口、每个节点(#CPU和#GPU)的配置。尽管没有发言人证实这些信息,但我认为我自己对其中一些重要因素有一些了解。
微软在宣布这一公告的博客文章中,放开了这么一张没有实质内容的超级计算机图片。资料来源:微软
首先,GPU必须是NVIDIA V100,因为a)NVIDIA刚刚发布了A100,在此之前,他们很难交付10000个。 b)GPU不能是AMD Radeons,因为Radeons尚不支持OpenAI研究所需的生态系统。因此经过这么分析筛选,得出的结论就是,GPU就是NVIDIA V100。以10000个为例,假设这对微软来说是一笔非常可观的交易,每个GPU成本仅为5000美元,那么会给NVIDIA带来大约5000万美元的收入,而且也许上个季度就发生了。
说到CPU,计算一下就能知道是AMD EPYC Rome CPU。除非微软花费巨资采购56核至强CPU,否则英特尔至强的核心数尚不足以提供支持。以285000个核心为例,假设双插槽配置的AMD 64核CPU,那就相当于大约2220个节点。每个节点配置4个GPU,可以连接到大约8800个GPU,因此至少需要10000个GPU。有消息灵通的匿名人士证实了我的推理,称确实使用的是AMD EPYC。
互连方面,NVIDIA收购了Mellanox,在超级计算机领域处于领导地位,且倾向于InfiniBand,因此我认为应该采用的是InfiniBand。
虽然我了解到,微软和OpenAI希望这次公告的重点放在公告本身已经他们正在进行的研究上,但这个做法有些过时了,与Satya Nadella倡导的转变是不相符的。在开放的IT世界中,事实信息是至关重要的,公告中应该包含有这些事实。微软使用了类似漫画的图片,而不是吸引人的照片,让我们无法确定使用了哪个系统(猜测是Open Compute HGX,但是…)。那好吧。我做了一些分析研究,得出的结论是AMD、NVIDIA和Mellanox胜出了,他们的领先技术和成果将被用于人工智能研究领域,这一点值得肯定。
好文章,需要你的鼓励
在迪拜Gitex 2025大会上,阿联酋成为全球AI领导者的雄心备受关注。微软正帮助该地区组织从AI实验阶段转向实际应用,通过三重方法提供AI助手、协同AI代理和AI战略顾问。微软已在阿联酋大举投资数据中心,去年培训了10万名政府员工,计划到2027年培训100万学习者。阿联酋任命了全球首位AI部长,各部门都配备了首席AI官。微软与政府机构和企业合作,在公民服务和金融流程等领域实现AI的实际应用,构建全面的AI生态系统。
查尔斯大学和意大利布鲁诺·凯斯勒基金会的研究团队首次系统性解决了同声传译AI系统延迟评估的准确性问题。他们发现现有评估方法存在严重偏差,常给出相互矛盾的结果,并提出了YAAL新指标和SOFTSEGMENTER对齐工具。YAAL准确性达96%,比传统方法提升20多个百分点。研究还开发了专门的长音频评估工具LongYAAL,为AI翻译技术发展提供了可靠的测量标准。
苹果与俄亥俄州立大学研究人员发布名为FS-DFM的新模型,采用少步离散流匹配技术,仅需8轮快速优化即可生成完整长文本,效果媲美需要上千步骤的扩散模型。该模型通过三步训练法:处理不同优化预算、使用教师模型指导、调整迭代机制来实现突破。测试显示,参数量仅1.7亿至17亿的FS-DFM变体在困惑度和熵值指标上均优于70-80亿参数的大型扩散模型。
印度理工学院团队构建了史上最大规模印度文化AI测试基准DRISHTIKON,包含64288道多语言多模态题目,覆盖15种语言和36个地区。研究评估了13个主流AI模型的文化理解能力,发现即使最先进的AI也存在显著文化盲区,特别是在低资源语言和复杂推理任务上表现不佳,为构建文化感知AI提供了重要指导。