至顶网服务器频道 11月22日 新闻消息(文/刘新萍): 人工智能(AI)并不是一个新概念,在其超过60年的发展史中经过了三起三落,过程可谓跌宕起伏。早在上世纪50年代就已经被学术界提出来,第一代神经网络Perceptron的发明也将AI推向第一个高峰,但计算能力的缺乏导致系统没有能力完成大规模的训练和复杂任务,并在1970年左右进入低谷。1986年BP算法出现,使大规模神经网络训练成为可能,在当时主要研究机构DARPA的推动下,AI进入了第二个黄金时期,并开始致力于语音识别和图像理解。此后,受限于其准确率,相关技术迟迟未能形成大规模应用,陷入第二个低潮期。在2006年后,深度学习和云计算技术的应用,使智能算法性能获得了突破性进展。在2016年,以谷歌AlphaGo战胜世界围棋冠军李世石为标志,AI进入了第三个黄金期。而随着996发文和平安城市建设的深入,公共安全成为AI落地商用的主要领域之一。多家创业公司获得大量资金投入,包括商汤、依图等业内顶尖专业算法厂商,总计获得了超过50亿人民币的投资。随着政策的重视和资金的注入,相关算法也进入了快速更新换代的高速发展期。以人脸识别为例,3年前还仅应用于静态识别,如1:1人证比对、1比多的身份证查找等。如今在很多城市已经在试点动态识别,并产生了一定的实战效果。可以预见,未来会出现每隔1-2年准确率上升一个台阶,每隔2-3年产生新的识别内容。
换个角度从实战业务来看,技战法是实战业务的核心。技战法的总结和传承,是向科技要警力非常重要的落脚点。支撑技战法的应用系统通常追求稳定,以减少用户的学习成本,传承经验,提升操作效率。那么,智能算法的快速更新换代和技战法的稳定传承在一定程度上,就将产生矛盾。同时,随着视频数据规模越来越大,对算力的需求也越来越强。一次性投资建设一个能满足未来所有算力需求的硬件基础设施,无疑是不现实的。这意味着,一个对上接口稳定,对下可灵活更新算法、扩展和分配算力的基础平台就成为了项目建设成功的关键因素。传统的视频监控平台,通常是软件与硬件绑定,数据与系统绑定,算法与应用绑定,无法解决这一矛盾,建成就意味着进入淘汰期。
今年安博会上,不少厂商以智能和云计算为主要着眼点,推出了自己的视频云解决方案。这种方案的理念,就是以云计算为核心,用开放的智能算法和数据接口,来解决上层应用稳定、中间智能算法快速迭代、底层硬件设备随需扩展之间的矛盾。通过云操作系统,将硬件设备虚拟化,根据算法和应用系统的需求,进行插件式更新。不仅硬件可以随需扩展,算法也可以灵活更新。而且可以很好的支持算力灵活调度,支撑平战结合的高效应用。而视频云也并非全新概念,在国内部分地市建设过程中,也采用了相关技术,并取得了良好的应用效果。相信随着AI在公共安全领域的深化应用,视频云架构将成为基础设施的建设标准。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。